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Abstract. Given a topologically transitive system on the unit interval, one can investigate the
cover time, i.e., time for an orbit to reach certain level of resolution in the repeller. We introduce a
new notion of dimension, namely the stretched Minkowski dimension, and show that under mixing
conditions, the asymptotics of typical cover times are determined by Minkowski dimensions when
they are finite, or by stretched Minkowski dimensions otherwise. For application, we show that for
countably full-branched affine maps, results using the usual Minkowski dimensions fail to produce
a finite log limit of cover times whilst the stretched version gives an finite limit. In addition, cover
times of irrational rotations are explicitly calculated as counterexamples, due to the absence of
mixing.

1. Introduction

Let X ⊂ [0, 1] and f : X → [0, 1] a topologically transitive piecewise expanding Markov map
equipped with an ergodic invariant probability measure µ, we study the cover times for points in
the repeller Λ, i.e., given x ∈ Λ let

τr(x) := inf
{
k : ∀y ∈ Λ, ∃j ≤ k : y ∈ d(f j(x), y) < r

}
.

The first quantitative result of expected cover times E[τr] was obtained for Brownian motions
in [M], and generalised in recent works [BJK] and [JT] for iterative function systems and one
dimensional dynamical systems respectively. In [BJK], an almost sure convergence for − log τr/ log r
was also demonstrated for chaos games associated to (finite) iterated function systems, assuming
the invariant measure µ supported on the attractor satisfies rapid mixing conditions. All results
suggest that the asymptotic behaviour of τr is crucially linked to the Minkowski dimensions: let
Mµ(r) := minx∈supp(µ) µ(B(x, r)), the upper and lower Minkowski dimensions of µ are defined
respectively by

dimM (µ) := lim sup
r→0

logMµ(r)

log r
, dimM (µ) := lim inf

r→0

logMµ(r)

log r
,

and simply write dimM (µ) when the two quantities coincide. In other words, these dimension-like
quantities reflect the decay rate of the minimal µ-measure ball at scale r, and they are closely related
to the box-counting dimension of the ambient space (see [FFK] for more details). In addition, the
Minkowski dimensions of µ govern the asymptotic behaviour of hitting times associated to the balls
which are most ‘unlikely’ to be visited at small scales. Our first result below gives an almost sure
asymptotic growth rate of cover times in terms of the Minkowski dimensions.
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2 B. ZHAO

Theorem 1.1. Let (f, µ) be a probability preserving system where f is topologically transitive,
Markov and piecewise expanding. If dimM (µ) <∞, then for µ-a.e. x in the repeller,

lim sup
r→0

log τr(x)

− log r
≥ dimM (µ), lim inf

r→0

log τr(x)

− log r
≥ dimM (µ).

If (f, µ) is exponentially ψ-mixing, then for µ-almost every x ∈ Λ, the inequalities above are im-
proved to

lim sup
r→0

log τr(x)

− log r
= dimM (µ), lim inf

r→0

log τr(x)

− log r
= dimM (µ).

In particular, it is true if the invariant measure in question is doubling.

Remark 1.2. We remark that systems with finite Minkowski dimensions, or at least dimM (µ) <∞,
are fairly common. In particular, if µ is doubling, i.e., there exists constant D > 0 such that for
all x ∈ supp(µ) and r > 0, Dµ(B(x, r)) ≥ µ(B(x, 2r)) > 0, then dimM (µ) <∞.

Proof. For each n ∈ N let xn ∈ supp(µ) be such that µ(B(xn, 2
−n)) = Mµ(2

−n), then by the
doubling property,

Mµ

(
2−n

)
= µ

(
B
(
xn, 2

−n)) ≥ D−1µ
(
B
(
xn, 2

−n+1
))

≥ D−1Mµ

(
2−n+1

)
= D−1µ

(
B(xn−12

−n+1
)
,

and reiterating this one gets Mµ(2
−n) ≥ D−n+1Mµ(1/2), in other words

logMµ(2
−n)

−n log 2
≤ −(n− 1) logD + logMµ(1/2)

−n log 2
.

As for all r > 0, there is unique n ∈ N such that 2−n < r ≤ 2−n+1, and log 2−n

log 2−n+1 = 1,

lim sup
r→0

logMµ(r)

log r
= lim sup

n→∞

logMµ (2
−n)

−n log 2
≤ logD

log 2
<∞. □

However, the Minkowski dimensions are not always finite due to non-doubling behaviours, or more
extreme decay of Mµ(r) (see Example 3.2). Hence we need a new notion of dimension, invariant
under scalar multiplication (replacing Mµ(r) by Mµ(cr) for any c > 0 the limit does not change),
to capture such decay rate in r.

Definition 1.3. Define the upper and lower stretched Minkowski dimensions by

dim
s
M (µ) := lim sup

r→0

log | logMµ(r)|
− log r

, dims
M (µ) := lim inf

r→0

log log |Mµ(r)|
− log r

.

Those quantities should be of independent interest. Our second theorem below deals with almost
sure cover times for systems in which Mµ(r) decays at stretched-exponential rates.

Theorem 1.4. Let (f, µ) be an ergodic probability preserving system where f is topologically trans-

itive, Markov and piecewise expanding. If dimM (µ) = ∞, but 0 < dims
M (µ), dim

s
M (µ) < ∞, then

for µ-almost every x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
≥ dims

M (µ), lim sup
r→0

log log τr(x)

− log r
≥ dim

s
M (µ) (1.1)

If (f, µ) is exponentially ψ-mixing, then for µ-almost every x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
= dims

M (µ), lim sup
r→0

log log τr(x)

− log r
= dim

s
M (µ). (1.2)
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Layout of the paper. Basic definitions are introduced in Section 2 and we delay the proofs of
the main theorems to Section 4. Several examples that satisfy Theorem 1.1 and Theorem 1.4 will
be discussed in Section 3. In Section 5 we will also prove that for irrational rotations, which are
known to have no mixing behaviour, Theorem 1.1 fails for almost every point when the rotations
are of type η (see Definition 5.1) for some η > 1. Lastly in Section 6 we show that similar results
hold for flows under some natural conditions.

2. Setup

Let A be a finite or countable index set, and P = {Pa}a∈A a collection of subintervals in [0, 1] with
disjoint interiors covering X . We say f : X → [0, 1] is a piecewise expanding Markov map if
(1) for any a ∈ A, fa := f |Pa is continuous, injective and f(Pa) a union of elements in P;
(2) there is a uniform constant γ > 1 such that for all a ∈ A, |Dfa| ≥ γ.

The repeller of f , denoted by Λ, is the collection of points with all their forward iterates contained
in P, namely

Λ :=

{
x ∈ X : fk(x) ∈

⋃
a∈A

Pa for all k ≥ 0

}
.

We study the dynamics of f : Λ → Λ, together with an ergodic invariant probability measure µ
supported on Λ. There is a shift system associated to f : let M be an A × A matrix such that
Mab = 1 if f(Pa) ∩ Pb ̸= ∅ and 0 otherwise. f is topologically transitive if for all a, b ∈ A, there
exists k such that Mk

ab > 0. Let Σ denote the space of all infinite admissible words, i.e.,

Σ :=
{
x = (x0, x1, . . . ) ∈ AN0 :Mxk,xk+1

= 1, ∀ k ≥ 0
}
.

A natural choice of metric on Σ is ds(x, y) := 2− inf{j≥0:xj ̸=yj}, and we define the projection map
π : Σ → Λ by

x = π (x0, x1, . . . ) if and only if x ∈
∞⋂
i=0

f−iPxi .

The dynamics on Σ is the left shift σ : Σ → Σ given by σ(x0, x1, . . . , ) = (x1, x2, . . . ), then π defines
a semi-conjugacy f ◦π = π ◦σ, and the corresponding symbolic measure µ̃ of µ is given by µ = π∗µ̃,
i.e., for all Borel-measurable set B ∈ B([0, 1]), µ(B) = µ̃

(
π−1B

)
.

Denote Pn :=
∨n−1
j=0 f

−jP, each P ∈ Pn corresponds to an n−cylinder in Σ: let Σn ⊆ An denote
all finite words of length n and for any i ∈ Σ, the n-cylinder defined by i is

[i] = [i0, . . . , in−1] := {y ∈ Σ : yj = ij , j = 0, . . . , n− 1} ,

then π[i0, i1, . . . , in−1] =
⋂n−1
j=0 f

−jPij =: Pi.

Furthermore, (f, µ) is required to have the following mixing property.

Definition 2.1. Say µ is exponentially ψ-mixing if there are C1, ρ > 0 and a monotone decreasing
function ψ(k) ≤ C1e

−ρk for all k ∈ N, such that the corresponding symbolic measure µ̃ satisfies:
for all n, k ∈ N, i ∈ Σn and j ∈ Σ∗ =

⋃
l≥1Σl,∣∣∣∣∣ µ̃([i] ∩ σ−(n+k)[j])

µ̃[i]µ̃[j]
− 1

∣∣∣∣∣ ≤ ψ(k).
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3. Examples

Theorem 1.4 is applicable to the following systems.

Example 3.1. Finitely branched Gibbs-Markov maps: let f be a topologically transitive piecewise
expanding Markov map with A finite. f is said to be Gibbs-Markov if for some potential ϕ : Σ → R
which is locally Hölder with respect to the symbolic metric ds, there exists G > 0 and P ∈ R such
that for all n ∈ N, all x = (x0, x1, . . . ) ∈ Σ,

1

G
≤ µ̃([x0, . . . , xn−1])

exp
(∑n−1

j=0 ϕ(σ
jx)− nP

) ≤ G.

For maps of this kind, |Df | is uniformly bounded so for each ball at scale r, it is possible to
approximate any ball with finitely many cylinders of the same depth (see for example the proof of
[JT, Lemma 3.2]), and by the Gibbs property of µ̃, the asymptotic decay rate converges so dimM (µ)
exists and is finite. Since Gibbs measures are exponentially ψ-mixing (see [Bow, Proposition 1.14]),
by Theorem 1.1, we have

lim
r→0

log τr(x)

− log r
= dimM (µ)

for µ-a.e. x in the repeller of f .

In the next example, when r → 0 at polynomial rate, Mµ(r) decays exponentially hence dimM (µ)
is infinite, and the stretched Minkowski dimensions are needed.

Example 3.2. Similar to [JT, Example 7.4], consider the following class of infinitely full-branched
maps: pick κ > 1 and set c = ζ(κ) =

∑
n∈N

1
nκ . Let a0 = 0, aj =

∑n
j=1

1
cjκ and define f by

∀n ∈ N0 = N ∪ {0}, f(x) = cnκ(x− an−1) for x ∈ [an−1, an) =: Pn.

Then f is an infinitely full-branched affine map, and we can associate this map with a full-shift
system on N: x = π(i0, i1, . . . ) if for all j ≥ 1, f j(x) ∈ Pij .
Let ω > 1 and construct µ̃ the finite Bernoulli measure by

µ̃([i0, . . . , in−1]) =
n−1∏
j=0

ω−ij ,

so the push-forward measure µ = π∗µ̃ has µ(Pn) = ω−n.

Proposition 3.1. dimM (µ) = ∞, but dims
M (µ) = 1

κ−1 .

Proof. For each r > 0, Mµ(r) is found near 1, then along the sequence rn = 1
2c

∑
j≥n j

−κ ≈
1

2c(κ−1)nκ−1 , the ball that realises Mµ(rn) is contained in
⋃∞
j=n Pj , hence

ω−n ≤Mµ(rn) ≤
ω−n

1− ω−1
,

therefore

dimM (µ) ≥ lim sup
n→∞

n logω

(κ− 1) log n
= ∞,

whereas for all n,

log n

(κ− 1) log n
≤ log | logMµ(rn)|

− log rn
≤ log n+ log logω

(κ− 1) log n− log(2c(κ− 1))
.

As for all r > 0, there is unique n ∈ N such that rn+1 ≤ r < rn while limn→∞
log rn+1

log rn
= 1, one

concludes with dims
M (µ) = 1

κ−1 . □
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As in [JT, Example 7.4] it is very difficult for the system to cover small neighbourhoods of 1 so

Theorem 1.1 says lim supr→0
log τr(x)
− log r ≥ dimM (µ) = ∞, but since µ̃ is Bernoulli hence ψ-mixing,

Theorem 1.4 asserts that

lim
r→0

log log τr(x)

− log r
=

1

κ− 1
µ-a.e.

4. Proof of Theorem 1.4

The proofs in this section are adapted from those of [BJK, Proposition 3.1, 3.2]. We will only demon-
strate the proofs for Theorem 1.4, i.e., the asymptotics are determined by stretched Minkowski di-
mensions; the proofs for Theorem 1.1 are obtained by replacing all stretched exponential sequences
in the proofs below by some exponential sequence, e.g. for a given constant s ∈ R, e±ns

will be
replaced by 2±ns.

Assuming the inequalities in (1.1), we first prove the (1.2) which requires the exponentially ψ-mixing
condition.

Remark 4.1. Assuming the conditions of Theorem 1.4, we will prove that the statements hold along
the subsequence rn = n−1 such that for each r > 0 there is a unique n ∈ N with rn+1 < r ≤ rn
while limn→∞

log rn+1

log rn
= 1 (if dimM (µ) or dimM (µ) are finite we choose rn = 2−n instead), and

since log τr(x) is increasing as r → 0,

lim sup
n→∞

log log τrn(x)

− log rn
= lim sup

r→0

log log τr(x)

− log r
,

and similarly for liminf’s.

4.1. Proof of (1.2).

Proposition 4.2. Suppose (f, µ) is exponentially ψ-mixing, and the upper stretched Minkowski

dimension of µ, dim
s
M (µ), is finite, then for µ-almost every x ∈ Λ,

lim sup
n→∞

log log τr(x)

− log r
≤ dim

s
M (µ).

Proof. Let ε > 0, and for simplicity denote α := dim
s
M (µ).

For any finite k-word i = x0, . . . , xk−1 ∈ Σk, let i− = x0, . . . , xk−2, i.e., i dropping the last digit.
Recall that for each i ∈ Σ∗, Pi = π[i], and we define

Wr := {i ∈ Σ∗ : diam(Pi) ≤ r < diam(Pi−)}.

By expansion, for each n ∈ N, the lengths of the words in Wn−1 are bounded from above, hence we
can define

L(n) :=
log n

log γ
+ 1 ≥ max{|i| : i ∈ Wn−1}.

Given y ∈ [0, 1] and r > 0 such that B(y, r) ⊂ supp(µ), define the corresponding symbolic balls by

B̃(y, r) := {[i] : i ∈ Wr, Pi ∩B(y, r) ̸= ∅} .

Note that if for some x ∈ Pi and [i] ∈ B̃(y, r), d(x, y) ≤ r + diam(Pi) ≤ 2r therefore

B(y, r) ⊂ πB̃(y, r) ⊂ B(y, 2r).
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Let Qn be a cover of Λ with balls of radius rn = 1/2n, denote the collection of their centres by Yn,
and #Qn = #Yn ≤ n. Let τ(Qn, x) be the minimum time for the orbit of x to have visited each
element of Qn at least once,

τ(Qn, x) := min
{
k ∈ N : for all Q ∈ Qn, exists 0 ≤ j ≤ k : f j(x) ∈ Q

}
.

Then τ1/n(x) ≤ τ(Qn, x) for all n and all x since for all y ∈ Λ, there is Q ∈ Qn and j ≤ τ(Qn, x)

such that f j(x), y ∈ Q hence d(f j(x), y) ≤ 1/n. Let ε > 0 be an arbitrary number and for each
k ∈ N, set L′(k) = L(k) + 1

ρ

(
kα+ε − logC1

)
where C1, ρ were given in Definition 2.1, then

µ
(
x : τ1/n(x) > en

α+ε
L′(4n)

)
≤ µ

(
x : τ(Qn, x) > en

α+ε
L′(4n)

)
= µ

(
x : ∃y ∈ Yn : f j(x) ̸∈ B(y, 1/2n), ∀j ≤ en

α+ε
L′(2n)

)
≤ µ

(
x : ∃y ∈ Yn : f jL

′(4n)(x) ̸∈ B(y, 1/2n), ∀j ≤ en
α+ε
)

= µ

 ⋃
y∈Yn

en
α+ε⋂
j=1

f−jL
′(4n)(x) ̸∈ B(y, 1/2n)

 ≤
∑
y∈Yn

µ

en
α+ε⋂
j=1

f−jL
′(2n)(x) ̸∈ B(y, 1/2n)

 .

(4.1)

As π
(
B̃(z, r)

)
⊆ B(z, 2r) for all z and all r > 0, using the exponentially ψ-mixing property of µ̃,

i.e., ψ(k) ≤ C1e
−ρk for all k ∈ N, by our choice of L′(4n),

∑
y∈Yn

µ

x :

en
α+ε⋂
j=1

f−jL
′(4n)(x) ̸∈ B(y, 1/2n)

 ≤
∑

y∈Yk+1

µ̃

x :

en
α+ε⋂
j=1

σ−jL
′(4n)(π−1x) ̸∈ B̃ (y, 1/4n)


≤
(
1 + ψ

(
1

ρ

(
(4n)α+ε − logC1

)))enα+ε ∑
y∈Yk+1

(
1− µ̃

(
B̃

(
y,

1

2n

)))enα+ε

≤
(
1 + e−n

α+ε
)enα+ε ∑

y∈Yk+1

(
1− µ

(
B

(
y,

1

4n

)))enα+ε

.

(4.2)

By definition of α, for all n large such that ε
4 log n ≥

(
α+ ε

4

)
log 4, there is

log

(
− logMµ

(
1

4n

))
≤ α+ ε/4(log 4n) ≤ (α+ ε/2) log n,

so for all y ∈ supp(µ) and all n large,

µ

(
B

(
y,

1

4n

))
≥ e−n

α+ε/2 ≥ e−n
ε/2

enα+ε .

As for all u ∈ R and large k, (1 + u
k )
k ≈ eu, combining (4.1) and (4.2), for some uniform constant

C2 > 0,

µ
(
x : τ1/n(x) > en

α+ε
L′(4n)

)
≤
(
1 + e−n

α+ε
)enα+ε ∑

y∈Yk+1

(
1− e−n

α+ε/2
)enα+ε

≤
(
1 + e−n

α+ε
)enα+ε

n

(
1− en

ε/2

enα+ε

)enα+ε

≤ C2 exp
(
log n− en

ε/2
)
,
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which is clearly summable over n. Then by Borel Cantelli, for all n large enough τ1/n(x) ≤
en

α+ε
L′(4n). Since logL′(4n) ≈ (α+ ε) log n≪ nα+ε, we have for µ−a.e. x ∈ Λ,

lim sup
n→∞

log log τ1/n(x)

log n
≤ lim sup

n→∞

log log
(
en

α+ε
L′(4n)

)
log n

≤ α+ ε.

By Remark 4.1 this upper bound for lim sup holds for all sequences decreasing to 0 and as ε > 0
was arbitrary, sending it to 0 one obtains that for µ−a.e. x ∈ Λ,

lim sup
r→0

log log τr(x)

− log r
= lim sup

n→∞

log log τ1/n

log n
≤ α. □

Proposition 4.3. Suppose (f, µ) is exponentially ψ-mixing and the lower stretched Minkowski
dimension of µ, dims

M (µ), is finite, then for µ-a.e. x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
≤ dims

M (µ).

Proof. Again for simplicity, denote α := dims
M (µ). Let ε > 0 and by definition of liminf there is a

subsequence {nk}k → ∞ such that for all k,

log(− logMµ(1/nk))

log nk
≤ α+ ε,

then repeating the proof of Proposition 4.2 by replacing n by nk everywhere, one gets that for
µ−almost every x,

lim inf
k→∞

log log τ1/nk
(x)

log nk
≤ α+ ε.

Again send ε→ 0, and use the fact that liminf over the entire sequence is no greater than the liminf
along any subsequence, the proposition is proved. □

4.2. Proof of the inequalities (1.1).

Proposition 4.4. For µ-almost every x ∈ Λ,

lim inf
n→∞

log log τr(x)

− log r
≥ dims

M (µ).

Proof. We continue to use the notation α = dims
M (µ). Let ε > 0 be arbitrary and by definition of

α for all large n there exists yn ∈ supp(µ) such that µ(B(yn, 1/n)) ≤ e−n
α−ε

. Let

T (x, y, r) := inf
{
j ≥ 0 : f j(x) ∈ B(y, r)

}
,

so for all n ∈ N and all x, τ1/n(x) ≥ T (x, yn, 1/n). Then by invariance,

µ
(
x : τ1/n(x) < en

α−ε
/n2
)
≤ µ

(
x : T (x, yn, 1/n) < en

α−ε
/n2
)

= µ
(
x : ∃ 0 ≤ j < en

α−ε
/n2 : f j(x) ∈ B(yn, 1/n)

)
≤

en
α−ε

/n2⋃
j=0

µ
(
x : f j(x) ∈ B(yn, 1/n)

)

≤
en

α−ε
/n2∑

j=0

µ

(
f−jB

(
yn,

1

n

))
≤ en

α−ε

n2
e−n

α−ε
=

1

n2
,
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which is summable. By Borel-Cantelli, since 2 log n≪ nα−ε, for µ-almost every x

lim inf
n→∞

log log τ1/n(x)

log n
≥ α− ε,

and since ε > 0 was arbitrary one can send it to 0. □

Similar to Proposition 4.2 and Proposition 4.3,

Proposition 4.5. For µ-almost every x ∈ Λ,

lim sup
r→0

log log τr(x)

− log r
≥ dim

s
M (µ).

Proof. Let ε > 0, then by definition of limsup there exists a subsequence {nk}k → ∞ such that for
all k,

log log (−Mµ(1/nk))

log nk
≥ α− ε.

Then repeating the proof of Proposition 4.4 along {nk}k, one gets that for µ-almost every x:

lim sup
k→∞

log log τ1/nk
(x)

log nk
≥ α− ε,

then sending ε→ 0,

lim sup
r→0

log log τr(x)

− log r
≥ lim sup

k→∞

log log τ1/nk
(x)

log nk
≥ α. □

5. Irrational rotations

The proof of (1.2) requires an exponentially ψ-mixing rate which is a strong mixing condition,
and it is natural to ask if the same asymptotic growth in Theorem 1.4 remains the same under
different mixing conditions, e.g. exponentially ϕ-mixing and α-mixing, or even polynomial ψ-
mixing. Although these questions are unresolved, in this section we will show that the limsup and
liminf of the asymptotic growth rate can differ if the system is not mixing at all.

Let θ ∈ (0, 1) be an irrational number and T (x) = x + θ (mod 1), and µ the one-dimensional
Lebesgue measure on [0, 1). Then (T, µ) is an ergodic probability preserving system with dimM (µ) =
1.

Definition 5.1. For a given irrational number θ, the type of Tθ is given by the following number

η = η(θ) := sup
{
β : lim inf

n→∞
nβ∥nθ∥ = 0

}
,

where for every r ∈ R, ∥r∥ = minn∈Z |r − n|.
Remark 5.2. (See [K]) For every θ ∈ (0, 1) irrational, η(θ) ≥ 1 and η(θ) = 1 almost everywhere,
but there exists irrational number with η(θ) ∈ (1,∞], e.g. the Liouville numbers.

For any irrational number θ ∈ (0, 1) there is a unique continued fraction expansion

θ = [a1, a2, . . . ] :=
1

a1 +
1

a2+...

where ai ≥ 1 for all i ≥ 1. Set p0 = 0 and q0 = 1, and for i ≥ 1 choose pi, qi ∈ N coprime such that

pi
qi

= [a1, . . . , ai] =
1

a1 +
1

... 1
ai

.
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Definition 5.3. The ai terms are called the i-th partial quotient and pi/qi the i-th convergent. In
particular, (see [K])

η(θ) = lim sup
n→∞

log qn+1

log qn
.

Theorem 5.4. For any irrational rotation Tθ with η(θ) > 1,

lim inf
r→0

log τr(x)

− log r
= dimM (µ) = 1 < η = lim sup

r→0

log τr(x)

− log r
µ-a.e.

The proof of this theorem relies on algebraic properties of the number η(θ), and for simplicity write
η from now on.

Lemma 5.5. [KS, Fact 1, Lemma 7]

(a) qi+2 = ai+2qi+1 + qi and pi+2 = ai+2pi+1 + pi.
(b) 1/(2qi+1) ≤ 1/ (qi+1 + qi) < ∥qiθ∥ < 1/qi+1 for i ≥ 1.
(c) If 0 < j < qi+1, then ∥jθ∥ ≥ ∥qiθ∥.
(d) for ε > 0, there exists uniform Cε > 0 such that for all j ∈ N, jη+ε∥jθ∥ > Cε.

The following propositions are largely based on [KS, Proposition 6, Proposition 10].

Proposition 5.6. For µ-a.e. x,

lim sup
r→0

log τr(x)

− log r
≥ η. (5.1)

Proof. First we prove the following simple claim.

Claim. The function φ(x) = lim supr→0
log τr(x)
− log r is constant µ a.e.

Proof of Claim. Suppose τr(x) = k, and for any y ̸= x, if there exists z such that for all 0 ≤ j ≤ k,∣∣T jy − z
∣∣ ≥ r, then for all 0 ≤ j ≤ k∣∣T jy − x+ x− z

∣∣ = ∣∣T jx− (x+ z − y)
∣∣ ≥ r,

contradicting τr(x) = k, then by symmetry τr(x) = τr(y), in particular τr(x) = τr(Tx) so φ◦T = φ,
and µ is (uniquely) ergodic implies φ is constant almost everywhere. □

By [KS, Proposition 10], for almost every x, y

lim sup
r→0

logWB(y,r)(x)

− log r
≥ η,

where WE(x) := inf{n ≥ 1 : Tnx ∈ E} denotes the waiting time of x before visiting E. Hence
there exists a set of strictly positive measure consisting of points that satisfy

lim sup
r→0

log τr(x)

− log r
≥ lim sup

r→0

logWB(y,r)(x)

− log r
≥ η,

since for all y ∈ [0, 1), τr(x) ≥WB(y,r)(x). By the claim above this holds for almost every x. □

Proposition 5.7. For µ-a.e. x,

lim sup
r→0

log τr(x)

− log r
≤ η.
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Proof. Let Qn := {[2−nj, 2−n(j + 1)) : j = 0, . . . , 2n − 1} and τ (Qn, x) the minimum time for x to
have visited each element of Qn, again we have τ2−n+1(x) ≤ τ(Qn, x) for all x. By Lemma 5.5 (a)
and (c), {∥qiθ∥}i is a decreasing sequence, and there for each n ∈ N exists a minimal j such that
∥qjθ∥ < 2−n ≤ ∥qj−1θ∥, write j = jn.

By [KS, Proposition 6] for all n, there is µ
(
W[0,2−n) > qjn + qjn−1

)
= 0. Notice that for all a, b ∈

[0, 1),

µ{W[a,a+b)(x) = k} = µ
{
{x :W[0,b)(x) = k}+ a

}
= µ

{
W[0,b)(x) = k

}
, (5.2)

as µ = Leb is translation invariant. Then by (5.2)

µ {τ (Qn, x) > qjn + qjn−1} = µ {x : ∀Q ∈ Qn : WQ(x) > qjn + qjn−1}

= µ

x :
⋃

Q∈Qn

{WQ(x) > qjn−1 + qjn}

 ≤
∑
Q∈Qn

µ (WQ > qjn−1 + qjn)

=

2n−1∑
j=0

µ
(
W[2−nj,2−n(j+1)) > qjn + qjn−1

)
=

2n−1∑
j=0

µ
(
W[0,2−n) > qjn + qjn−1

)
= 0.

Hence by Borel-Cantelli, for all n large enough, τ2−n+1(x) ≤ (qjn + qjn−1) for µ-a.e x ∈ [0, 1).

Let ε > 0, and by Lemma 5.5 there exists Cε such that

log (qjn + qjn−1) ≤ log (2qjn) ≤ log
2

∥qjnθ∥
≤ (η + ε) log qjn + log 2− logCε.

Again by Lemma 5.5 and our choice of jn, for all n large enough, up to a uniform constant

log τ2−n+1(x) ≤ log(qjn + qjn−1) < (η + ε) log qjn ≤ −(η + ε) log ∥qjn−1θ∥ ≤ (η + ε)n log 2.

Hence lim supn→∞
log τ2−n (x)
n log 2 ≤ η+ε for µ-almost every x, and send ε to 0 the proposition is proved

since for each r < 0 there is a unique n ∈ N for which 2−n < r ≤ 2−n+1. □

Proposition 5.8. For µ-almost every x ∈ [0, 1),

lim inf
r→0

log τr(x)

− log r
= 1.

Proof. Let ε > 0, and using the same arguments in the last proof, i.e., cover time is greater than
the hitting time of the ball of smallest measure at scale r, then along the sequence rn = 2−(n+1),
one gets for all [a− rn, a+ rn) ⊂ [0, 1), there is∑

n≥1

µ
(
τrn(x) < 2n(1−ε)

)
≤
∑
n≥1

µ
(
W[a−2−n−1,a+2−n−1)(x) < 2n(1−ε)

)

≤
∑
n≥1

2n(1−ε)∑
k=0

µ
(
T−k[a− 2−n−1, a+ 2−n−1)

)
=
∑
n≥1

2n(1−ε)2−n =
∑
n≥1

2−εn <∞.

Since for each r there is a unique n such that rn < r ≤ rn−1 while limn
log rn

log rn−1
= 1 so by Borel

Cantelli,

lim inf
r→0

log τr(x)

− log r
= lim inf

n→∞

log τ2−n(x)

n log 2
≥ 1− ε,

and sending ε to 0 the proposition is proved.
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For the upper bound of liminf, recall that τ (Qn, x) ≥ τ2−n(x), we can repeat the proof of Pro-
position 5.7, apart from that this time we choose {2−ni}i according to {qi}i∈N: for each i, choose
ni ∈ N to be the smallest number such that

∥qi+1θ∥ < 2−ni ≤ ∥qiθ∥,

hence as in Proposition 5.7,

µ (τ (Qni , x) > qi+1 + qi) ≤
∑

Q∈Qni

µ (WQ > qi+1 + qi) = 0.

Again by Lemma 5.5 (b), qi+1+qi ≤ 2qi+1 ≤ 2
∥qiθ∥ < 2ni+1 by our choice of ni, so limi→∞

log(qi+qi+1)
ni log 2

≤
1, therefore for µ-a.e. x,

lim inf
r→0

log τr(x)

− log r
≤ lim inf

i→∞

log τ2−ni (x)

ni log 2
≤ lim inf

i→∞

log τ (Qni , x)

ni log 2
≤ 1. □

6. Cover time for flows

In this section we prove results analogous to Theorem 1.1 regarding cover times for the same class
of flows discussed in [RT, §4].

Let {ft}t be a flow on a metric space (X , dX ) preserving an ergodic probability measure ν, i.e.,
ν
(
f−1
t A

)
= ν(A) for every t ≥ 0 and A measurable. Let Ω denote the non-wandering set and define

the cover time of x at scale r by

τr(x) := inf {T > 0 : ∀y ∈ Ω, ∃t ≤ T : d(ft(x), y) < r} .

We will assume the existence of a Poincaré section Y ⊂ X , and let RY (x) denote the first hitting
time to Y , i.e., RY (x) := inf{t > 0 : ft(x) ∈ Y }, with R :=

∫
RY dν <∞. Define the Poincaré map

by (Y, F, µ) where F = fRY
and µ is the induced measure on Y given by µ = 1

R
ν|Y . Additionally,

assume the following conditions are satisfied:

(H1) dimM (µ) exists and is finite for (F, µ),
(H2) (Y, F, µ) is Gibbs-Markov so Theorem 1.1 is applicable for µ-almost every y ∈ Y .
(H3) {ft}t has bounded speed: there exists K > 0 such that for all t > 0, d(fs(x), fs+t(x)) < Kt.
(H4) {ft}t is topologically mixing and there exists T1 > 0 such that⋃

0<t≤T1

ft(Y ) = X . (6.1)

(H5) There exists

Cf := sup {diam(ft(I))/diam(I) : I an interval contained in Y, 0 < t ≤ T1} ∈ (0,∞)

Remark 6.1. The last condition is satisfied when (H3) holds and the flow is, for example, Lipschitz,
i.e., there exists L > 0 such that for all x, y ∈ X ,

dX (ft(x), ft(y)) ≤ LtdX (x, y).

Theorem 6.2. Let (ft, ν) be a probability preserving flow satisfying conditions (H1)-(H5), then for
ν-almost every x ∈ Ω,

lim inf
r→0

log τr(x)

− log r
≥ dimM (ν)− 1. (6.2)
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Furthermore, if dimM (ν) = dimM (µ) + 1,

lim sup
r→0

log τr(x)

− log r
≤ dimM (µ) ν-a.e. (6.3)

Proof of (6.2). This proof is analogous to those of Proposition 4.3 and [RT, Theorem 4.1]. Let

Fix some y ∈ Ω and r > 0 and consider the random variable

ST,r(x) :=

∫ T

0
1B(y,r)(ft(x))dt,

and observe that by bounded speed property, for all T > r/K,

{x : ∃0 ≤ t ≤ T s.t. d(ft(x), y)) < r} ⊂ {S2T,2r(x) > r/K} ,

since if d(fs(x), y) < r for some s, then for all t < r/K, d(ft+s(x), y) < 2r. Also set

T (x, y, r) := inf{t ≥ 0 : ft(x) ∈ B(y, r)},

and similarly for all r > 0 and all x, z, τr(x) ≥ T (x, y, r).

Let ε > 0 be arbitrary and by definition of α for all large n ∈ N there exists yn ∈ Ω such that
ν(B(yn, 2

−n)) ≤ 2−n(α−ε). By Markov’s inequality, for some Tn > 0 to be decided later,

ν (x : τ2−n(x) < Tn) ≤ ν
(
x : T (x, yn, 2

−n) < Tn
)
= ν

(
x : ∃ 0 ≤ t < Tn : ft(x) ∈ B(yn, 2

−n)
)

≤ ν
(
x : S2Tn,2−n+1(x) > rn/K

)
≤ K2n

∫ 2Tn

0

∫
1B(yn,2−n+1)(ft(x))dν(x)dt

≤ K2n+1Tnν(B(yn, 2
−n+1)) ≤ 4KTn2−(n−1)(α−ε−1).

Choosing Tn = 2(n−1)(α−ε−1)/n2, the last term above is summable along n hence by Borel-Cantelli,
for ν-almost every x

lim inf
r→0

log τr(x)

− log r
≥ lim inf

n→∞

log Tn
n log 2

= α− 1− ε,

and since ε > 0 was arbitrary one can send it to 0, and by Remark 4.1 the proposition is proved. □

Note that the proof of lower bound is independent of the existence or mixing properties of the
Poincaré map (Y, F, µ). For upper bound, we first prove that the cover time of the Poincaré F in
Y is comparable to the cover time of the flow.

Lemma 6.3. Define

τFr (x) := min{n ∈ N0 : ∀y ∈ Y, ∃0 ≤ j ≤ n : d(y, F jx) < r}.

There exists λ = 1
Cf

for Cf defined in (H5) such that τr(x) ≤ T1 +
∑τFλr(x)

j=0 RY (F
jx).

Proof. This is adapted from the proof of [JT, Lemma 6.4] and [RT, Theorem 2.1]. F is by assump-
tion Gibbs-Markov so one can find P(r), a natural partition of Y using cylinder sets with respect to
F such that for each P ∈ P(r): (a) diam(P ) ≤ r/Cf , and (b) for all 0 < t ≤ T1, ft(P ) is connected.

Suppose τFr/Cf
(x) = k, then the orbit {x, F (x), . . . , F k(x)} must have visited every element of P,

and by (6.1) for each y ∈ Ω there is P ∈ P(r) and 0 < s ≤ T1 such that y ∈ fs(P ) and hence there
exists j ≤ k such that d

(
fs(F

j(x)), y
)
≤ Cf |P | < r. Then set λ = 1/Cf the lemma is proved. □
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Proof of (6.3). Now assume dimM (ν) = dimM (µ) + 1. Let ξ > 0 be arbitrary and define the sets

Uξ,N :=
{
x ∈ Y : |Rn(x)− nR| ≤ ξn,∀n ≥ N

}
,

where Rn(x) =
∑n−1

j=0 RY (F
j(x)). By ergodicity, limN µ(Uξ,N ) = 1 so for N large, ν(Uξ,N ) > 0

hence by invariance,

lim
N→∞

ν

(
ξN⋃
t=0

f−t(Uξ,N )

)
= 1. (6.4)

Let ε > 0 be arbitrary. By (6.4) one can pick N∗ such that for each ν typical x ∈ X there is some
t∗ ≤ ξN∗ such that ft∗(x) ∈ Y . By Theorem 1.1 applied to the Poincaré map and Lemma 6.3, for
all sufficiently small r > 0 we have the following two inequalities,

log τFλr(ft∗x)

− log λr
≤ dimM (µ) + ε,

log (τr(x)− T1)

− log r
≤

log
(
(R+ ξ)τFλr(ft∗x)

)
− log r

.

Then as λ,R are constants and ε is arbitrary, for ν-almost every x,

lim sup
r→0

log τr(x)

− log r
≤ dimM (µ) = dimM (ν)− 1. □

6.1. Example: suspension semi-flows over topological Markov shifts. In this section, we
give an example of a flow for which dimM (ν) = dimM (µ)+1 is satisfied, so Theorem 6.2 is applicable.

Let A be a finite alphabet and M an A×A matrix with {0, 1} entries, we will consider two-sided
topological Markov shift systems (Σ, σ, ϕ, µ), where

Σ :=
{
x = (. . . , x−1, x0, x1, . . . ) ∈ AZ : for all j, xj ∈ A and Mxj ,xj+1 = 1

}
,

σ the usual left shift, ϕ a Hölder potential and µ is the unique Gibbs measure with respect to ϕ.
We assume that dimM (µ) ∈ (0,∞). The natural symbolic metric on Σ is d(x, y) = 2−x∧y, where

x ∧ y = sup{k ≥ 0 : xj = yj , ∀|j| < k}.

An n-cylinder in this setting is given by
[
x−(n−1), . . . , x0, . . . , xn−1

]
:= {y ∈ Σ, yj = xj , ∀|j| < n},

and it is a well-known fact that balls in Σ are precisely the cylinder sets. The left-shift map σ is
bi-Lipschitz with Lipschitz constant L = 2. For more detailed description of the shift space, see
[Bow, §1].

Let φ ∈ L1(µ) be a positive Lipschitz function, define the space

Yφ := {(x, s) ∈ Σ× R≥0 : 0 ≤ s ≤ φ(x)} / ∼

where (x, φ(x)) ∼ (σ(x), 0) for all x ∈ I. The suspension flow Ψ over σ is the function acts on Yφ
by

Ψt(x, s) = (σk(x), v),

where k, v ≥ 0 are determined by s+ t = v +
∑k−1

j=0 φ(σ
j(x)). The invariant measure ν for the flow

Ψ on Yφ satisfies the following: for every g : Yφ → R continuous,∫
gdν =

1∫
Σ φdµ

∫
Σ

∫ φ(x)

0
g(x, s)dsdµ(x). (6.5)
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The metric on Yφ is the Bowen-Walters distance dY (see for example [BW]). Define another metric
dπ on Yφ: for all (xi, ti)i=1,2 ∈ Yφ,

dπ((x1, t1), (x2, t2)) := min


d(x, y) + |s− t|,
d(σx, y) + φ(x)− s+ t,

d(x, σy) + φ(y)− t+ s

 ,

and the following proposition says dπ is comparable to the Bowen-Walters distance.

Proposition 6.4. [BS, Proposition 17] There exists c = cπ such that

c−1dπ((x1, t1), (x2, t2)) ≤ dY ((x1, t1), (x2, t2)) ≤ c dπ((x1, t1), (x2, t2)).

Then the Minkowski dimension of the flow-invariant measure ν is given by

Proposition 6.5. dimM (ν) = dimM (µ) + 1.

Proof. The proof is based on the proof of [RT, Theorem 4.3] for correlation dimensions.

By Proposition 6.4 for all r > 0,

(B(x, r/2c)× (s− r/2c, s+ r/2c)) ∩ Y ⊂ BY ((x, s), r)

where BY denotes the ball with respect to the metric dY , then for all (x, s) ∈ Yφ, put φ =
∫
Σ φdµ,

then

ν(BY ((x, s), r)) ≥ ν(B(x, r/2c)×
(
s− r

2c
, s+

r

2c

)
,

log ν(BY ((x, s), r))

log r
≤

log
(
r
cφµ

(
B(x, r2c)

))
log r

.

Hence dimM (ν) = lim supr→0
logmin(x,s)∈supp(ν) ν(BY ((x,s),r)

log r ≤ dimM (µ) + 1.

For lower bound, define

B1 := B(x, cr)× (s− cr, s+ cr), B2 := B(σx, cr)× [0, cr),

B3 :=
{
(y, t) : y ∈ B(σ−1x, 2cr), and φ(y)− cr ≤ t ≤ φ(y)

}
.

Then as in the proof of [RT, Theorem 4.3], BY ((x, s), r) ⊂ (B1 ∪B2 ∪B3) ∩ Yφ.

For all r > 0 and (x, s) ∈ Yφ by (6.5), and as µ is σ, σ−1 invariant,

ν(B1 ∩ Yφ) = 2crµ(B(x, cr))/φ, ν(B2, Yφ) ≤ crµ(B(x, cr))/φ

ν(B3 ∩ Yφ) ≤ crµ(σ−1B(x, 2cr))/φ = crµ(B(x, 2cr))/φ.

Therefore

ν(BY ((x, s), r) ≤
1

φ
(3rµ(B(x, cr)) + crµ(B(x, 2cr))) ,

which is enough to conclude that dimM (ν) ≥ dimM (µ) + 1. □
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