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Abstract 

In the study of dynamical systems, circle maps are often the simplest type of one-

dimensional system to be examined. However, they still admit non-trivial dynamics 

and can be investigated using different mathematic approaches. In principle, the 

dynamics of circle homeomorphism have an enriched relationship with 

combinatorics, which is not the primary aim of this dissertation, but we will briefly 

review the relation between combinatorics and the dynamical properties of circle 

homeomorphisms. The major focus will be around a particular object, which are, 

minimal sets of circle maps. We will investigate minimal sets from two different 

perspectives: minimal sets of a circle homeomorphism subgroup in Section II, and 

the minimal set of one (single) homeomorphism in Section III, with an emphasis on 

𝒞1  diffeomorphisms. These two sections can be read fairly independently, apart 

from one proposition in §2.1 which will be used in Section III.  

In Section I, some preparatory definitions and simple results will be provided in 

relation to circle homeomorphisms, including lifts, orientations, and a particular 

space of interval maps, 𝑆(𝒥)  with its subset of rotations 𝐼([0,1]) . Functions in the 

former set 𝑆(𝒥) 𝑖𝑠 identified with orientation preserving circle homeomorphisms. 

Then, the combinatorically defined process of the rotation number, introduced in de 

Melo’s book, will be presented, in order to better depict the dynamical behaviour of 

circle homeomorphisms without fixed points. We will also take a quick look at 

Denjoy’s theorem and a few important consequences at the end of this section, 

where the concept of a ‘wandering interval’ is also included for later sections. 

In Section II, following the study of Denjoy’s results, we will investigate the 

behaviour of minimal sets associated of a circle homeomorphism, and more 

generally a subgroup of 𝐻𝑜𝑚𝑒𝑜(𝑆1). We will see an interesting conjugacy between 

certain types of circle homeomorphism subgroups and subgroups of 𝑃𝑆𝐿(2,ℝ), an 

essential set of transformations in the theory of hyperbolic geometry, therefore it is 

possible to label such group elements parabolic, hyperbolic and elliptic. Under some 
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regularity called ‘convergence property’, a discrete circle homeomorphism subgroup 

is topologically conjugate to a Fuchsian group in 𝑃𝑆𝐿(2, ℝ). It is a well-known fact 

that every Fuchsian group G acting on the hyperbolic half-plane ℍ2 attains a limit 

set 𝐿(G) on the boundary 𝜕ℍ2  (or 𝑆1 = 𝜕𝔻2 , if we conjugate the acting group by 

Cayley transformation 𝜙 ), which is unique and minimally invariant under Γ . The 

structure of 𝐿(G) has only three possibilities, which coincides with those of minimal 

sets of subgroups of circle homeomorphisms, therefore it makes sense to pair them 

up Similarly, features of their minimal sets justify calling these subgroups of circle 

homeomorphisms, elementary, of first type and second type. Unfortunately, this 

section contains various results from hyperbolic geometry and group theory, and 

their proofs are omitted since they do not fit the general setting of this paper and 

one can find them in various standard textbooks of hyperbolic geometry and group 

theory.  

In Section III, we will first consider results discussed in a work by McDuff, and later 

we introduce their generalisations by A. Portela, which deal with the question of 

whether there exists a 𝒞1 diffeomorphism whose minimal set is topologically Cantor. 

These works partially answer to a problem proposed by Herman. It can be proven 

that for any Cantor subset  𝐾 ⊂ 𝑆1, there exists a homeomorphism with 𝐾 being its 

unique minimal set; but this holds not in the case of a diffeomorphism, which has 

more desirable properties such as uniform convergence of Fourier sums. 

Importantly, we know the derivative of a 𝒞1 function changes very little on a small 

interval of 𝑆1, thus given a Cantor subset, the lengths of connected components in its 

complement need to be regulated so that its corresponding circle homeomorphism 

is a 𝒞1 diffeomorphism. Two concrete examples are provided as a demonstration of 

minimal Cantor failing to be 𝒞1 minimal.  

This dissertation ends with a conclusion section in which the major results 

introduced and discussed will be reviewed quickly, together with several questions 

induced by the mathematical investigations done so far. 

 



iv 

Contents 

Declaration ................................................................................................................................ i 

Abstract ...................................................................................................................................... ii 

Introduction and preliminaries ........................................................................................ 1 

1.1 Conventions, notations and some useful facts ...................................... 2 

1.2 Rotation number and combinatorics........................................................ 7 

1.3 Denjoy’s results ................................................................................................... 13 

Groups ..................................................................................................................................... 19 

2.1 Definition and basic properties .................................................................... 19 

2.2 Minimal sets of subgroups of circle homeomorphisms ...................... 22 

Cantor minimal sets of diffeomorphisms .................................................................. 34 

3.1 McDuff’s Condition ....................................................................................... 34 

3.2 Portela’s p-Separation Condition. ........................................................... 41 

3.3 Two Examples ................................................................................................ 45 

Conclusion.............................................................................................................................. 49 

Bibliography .......................................................................................................................... 52 

 

  



1 

Section 1 

Introduction and preliminaries 

The starting point of the theory of dynamical systems is usually identified with 

works done by Henri Poincare  on celestial mechanics in 1890s, who intensively 

studied the dynamics of circle homeomorphisms in seeking classification of 

solutions of ODE on torus. He introduced an important quantity associated to every 

circle map, the rotation number. We will review in this section how it is defined and 

its contribution to conjugate maps; more specifically speaking, if 𝑓: 𝑆1 → 𝑆1  is an 

orientation-preserving map without periodic points with rotation number 𝜌(𝑓) ∈

ℝ\ℚ, then 𝑓 is at least semi-conjugate to a rotation map 𝑅𝜌(𝑓) via a continuous and 

order-preserving ℎ  that maps orbits of 𝑓  onto orbits of  𝑅𝜌(𝑓) . Denjoy (1930) and 

Schwartz later (1963) in their work provided stronger statement based on 

Poincare ’s semi-conjugacy result, that is, certain types of smoothness regularity will 

guarantee that a 𝒞1 diffeomorphism is in fact topologically conjugate to an irrational 

rotation on the circle, and slight changes to these regularities will immediately 

dismiss the conjugate relationship. Proofs of these theorems require further 

dynamical tools, and we shall see how they inspire the study of minimal sets later. 
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1.1 Conventions, notations and some useful facts 

Throughout this section, we will denote the smallest open interval between 𝑎, 𝑏, by 

(𝑎, 𝑏),  regardless of 𝑎 < 𝑏  or 𝑏 < 𝑎 ; similarly, the smallest closed interval is [𝑎, 𝑏]. 

The length of any interval or connected subset 𝐼 of the circle will be denoted as |𝐼|. 

The complement of a subset 𝐴 ⊂ 𝑆1 is either noted as 𝐴𝑐  or 𝑆1\𝐴. The following four 

items are fundamental for the analysis of circle map dynamics.  

Def. 1.1 The unit circle [0,1]\~ = ℝ\ℤ = 𝕋1  is denoted as 𝑆1.  

Given a map 𝑓: 𝑆1 → 𝑆1, 𝑓𝑘 = 𝑓 ∘ 𝑓 ∘ … ∘ 𝑓⏟        
𝑘 𝑡𝑖𝑚𝑒𝑠

.   

The forward orbit of some 𝑥 ∈ 𝑆1will be denoted as 𝑂𝑓(𝑥) = {𝑓
𝑘(𝑥)| 𝑘 ≥ 0}, and its 

𝜔-limit set is  𝜔(𝑥) = {𝑦 ∈ 𝑆1| ∃𝑛𝑘 → ∞ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑛𝑘 → 𝑦}. Notice also that since 

the unit circle is a compact set, 𝜔(𝑥) is non-empty. 

Def. 1.2 Let 𝑓: 𝑆1 → 𝑆1 be a circle map, and 𝜋:ℝ → 𝑆1, 𝜋(𝑥) = 𝑥 𝑚𝑜𝑑 1, a lift of 𝑓 is 

a function 𝐹:ℝ → ℝ such that 𝑓 ∘ 𝜋 = 𝜋 ∘ 𝐹.  

Fact 1.3  

(i) If 𝐹 is a lift of 𝑓, then the family of lifts of 𝑓 is given by {𝐹 + 𝑘| 𝑘 ∈ ℤ}. Moreover, 

there is a unique choice of 𝐹 such that 𝐹(0) ∈ [0,1) 

(ii) If 𝑓 is a homeomorphism with a lift 𝐹, then 𝑓−1 is lifted by 𝐹−1. 

(iii) If 𝑓 is a circle homeomorphism, then a homeomorphism 𝐹 lifts 𝑓 if and only if 

𝐹(𝑥 + 𝑛) = 𝐹(𝑥) ± 𝑛, ∀𝑛 ∈ ℤ, ∀𝑥 ∈ ℝ.  

(proof is omitted) 

Def. 1.4 𝑓: 𝑆1 → 𝑆1  is said to be orientation-preserving if its lift 𝐹  is monotone 

increasing. Orientation-reversing hence corresponds to monotone decreasing lifts. 

Denote the set of orientation-preserving circle homeomorphisms by 𝐻𝑜𝑚𝑒𝑜+(𝑆1), 

it is also a group under composition. 



3 

The first non-trivial dynamical result in this section is a strong statement on 

orientation-reversing maps. 

Fact 1.5 An orientation-reversing circle homeomorphism has exactly two fixed 

points. 

Proof.  Let F be the unique lift of 𝑓 such that 𝐹(0) ∈ [0,1]. If 𝐹(0) = 0, then by (iii) of 

Fact 1.3, 𝐹(1) = −1 since the lift is monotone decreasing, and this means by IVT 

there exists 𝑦 ∈ (0,1)  such that 0 > 𝐹(𝑦) = 𝑦 − 1 > −1 , therefore𝑓 ∘ 𝜋(𝑦) = 𝜋 ∘

𝐹(𝑦) = 𝜋(𝑦 − 1) = 𝑦,   and{0, 𝑦}  are the two fixed points of 𝑓 . Otherwise, if𝐹(0) >

0, 𝐹(1) < 0, by IVT there exist 𝑥, 𝑦 ∈ (0,1) such that 0 < 𝐹(𝑥) = 𝑥, and 𝐹(𝑦) = 𝑦 −

1 < 0, hence {𝑥, 𝑦} are the fixed points of 𝑓. ∎ 

 

Fact 1.6 If 𝐹, 𝐺 are lifts of 𝑓, 𝑔 respectively, then 𝐹 ∘ 𝐺 lifts 𝑓 ∘ 𝑔. 

Proof. 𝜋 ∘ (𝐹 ∘ 𝐺) = (𝜋 ∘ 𝐹) ∘ 𝐺 = (𝑓 ∘ 𝜋) ∘ 𝐺 = 𝑓 ∘ (𝑔 ∘ 𝜋) = (𝑓 ∘ 𝑔) ∘ 𝜋  by 

associativity of composition. This also means 𝐹𝑛 lifts 𝑓𝑛. ∎ 

 

Fact 1.7 If a homeomorphism 𝑓: 𝑆1 → 𝑆1 preserves orientation and has a periodic 

point of period 𝑘, then every orbit is either periodic or asymptotic to a periodic orbit 

of order 𝑘. 

Proof.  Let J be a closed interval and 𝑓 ∶  𝐽 →  𝐽 be a continuous injective map.  

First consider the case that 𝑓(𝑥)  >  𝑥 . Then 𝑓2(𝑥)  =  𝑓(𝑓(𝑥))  >  𝑓(𝑥)  since 𝑓  is 

monotone increasing. By induction we get 𝑓𝑛(𝑥) > 𝑓𝑛−1(𝑥). 

{𝑓𝑛(𝑥)}𝑛≥0  is an increasing sequence in 𝐽 , and by continuity of 𝑓 , define first 𝑦 =

sup {𝑓𝑛(𝑥)}, and 𝑦 = lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓( lim
𝑛→∞

𝑓𝑛−1(𝑥)) = 𝑓(𝑦). 

Similarly, if 𝑓(𝑥) < 𝑥, the sequence {𝑓𝑛(𝑥)}𝑛≥0is decreasing and hence converge to 

𝑦 = inf{𝑓𝑛(𝑥)}𝑛≥0. 
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In the case of a circle map, if 𝑦 is a periodic point of order 𝑘, let 𝐽 = 𝑆1\{𝑦}, and the 

𝜔-limit set of any orbit is a periodic orbit of order 𝑘. ∎ 

The illustration handily borrowed from [2] below gives a visualization of the cases 

in which a circle homeomorphism has periodic points.  

The right one corresponds to a orientation preserving map with 2 periodic points 

and the left is an orientation reversing map.

 

Figure 1 Circle homeomorphisms with periodic points 

 

Moreover, by Fact 1.3&1.6, if 𝑓 is orientation reversing, 𝑓2 is orientation preserving, 

and hence every point is asymptotic to one of the two fixed points or to a periodic 

orbit of period 2. 

Piecing these facts together one can conclude that a circle homeomorphism with 

periodic points implies the dynamics of any point in 𝑆1 will approach asymptotically 

to the periodic points, therefore predictable in the long term. More precise 

statements of these maps can be derived by obtaining a better description of the set 

of periodic points; in fact, there is a detailed statement analogous to Sharkovskii’s 

theorem given by X.Zhao (see [4], theorem 4.5) on circle maps with a periodic point 

of least period 3.  

 

Prop. 1.8 Let 𝑔: 𝑆1 → 𝑆1, 𝑔(𝑥) = 𝑥 + 𝛼 (𝑚𝑜𝑑1) for 𝛼 ∈ (0,1) irrational. Then 𝑂𝑔(𝑥) 

is dense in 𝑆1 for any 𝑥 ∈ 𝑆1. 
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Proof.  

Claim. ∀𝑥 ∈ 𝑆1, 𝑂𝑔(𝑥) has infinite cardinality. 

Proof of claim: suppose not, then assume for some 𝑥, ∃𝑘 < ∞  𝑠. 𝑡. 𝑂𝑔(𝑥) =

{𝑥, 𝑔(𝑥),… , 𝑔𝑘(𝑥)}, and hence for any 𝑙 ∈ ℕ, exists 𝑚 ≤ 𝑘 such that: 

 𝑥 + 𝑙𝛼 (𝑚𝑜𝑑1) = 𝑔𝑙(𝑥) = 𝑔𝑚(𝑥) = 𝑥 +𝑚𝛼 (𝑚𝑜𝑑1), which implies that 

(𝑙 − 𝑚)𝛼 ∈ ℤ, contradicting that 𝛼 is irrational.  

Now let 𝜀 > 0 be given and let 𝐽 be a closed interval of length smaller than ε. Then 

there is 𝑛 ∈ ℕ 𝑠. 𝑡.  {𝑔𝑖(𝐽)}
𝑖≥0

𝑛
 covers the circle: because these intervals have equal 

length and their interiors are disjoint.  

It follows that for some 0 ≤ 𝑗 ≤ 𝑛, the cardinality, |𝑂𝑔(𝑥) ∩ 𝑔
𝑗(𝐽)| ≥ 2, i.e. ∃𝑙,𝑚 ∈ ℕ 

such that 0 < |𝑔𝑙(𝑥) − 𝑔𝑚(𝑥)| < 𝜀 ⇒ |𝑙 − 𝑚|𝛼 (𝑚𝑜𝑑1) < 𝜀, so the set 

{𝑔𝑖(𝑙−𝑚)([𝑔𝑙(𝑥), 𝑔𝑚(𝑥)])} 𝑖∈ℕ covers the circle and hence every point in 𝑆
1 is 𝜀- 

close to some point in 𝑂𝑔(𝑥). This holds for any 𝜀 > 0 and any 𝑥 ∈ 𝑆
1. ∎ 

 

To describe the dynamics of homeomorphisms on 𝑆1 without periodic points, 

Poincare  introduced a powerful tool, rotation number, which is invariant under 

topological conjugacy. This is first introduced in his study of differential equations 

on torus, inspired by the study of planetary orbits. 

Conventionally this number is defined through a lift 𝐹 of 𝑓: 𝑆1 → 𝑆1, which is: 

 𝜌(𝐹) = lim
𝑛→∞

𝐹𝑛(𝑥)−𝑥

𝑛
 (mod1), 

and this limit can be proven independent of 𝑥 ∈ ℝ.  However, it is also the case that 

this definition does not give a direct reflection of the dynamics, therefore we will 

consult from the combinatoric analysis of circle maps, introduced in the book by de 

Melo and van Strien, as another way of deriving this number. 

Remark From this definition, an irrational rotation 𝑔(𝑥) = 𝑥 + 𝛼 (𝑚𝑜𝑑1) it can be 

easily proven that the rotation number of 𝑔 is 𝛼. 

 

Def. 1.9 Let 𝑓, 𝑔: 𝑆1 → 𝑆1 be two circle homeomorphisms, call 𝑓 and 𝑔 are semi-

conjugate if there exists ℎ: 𝑆1 → 𝑆1, a continuous surjection such that ℎ ∘ 𝑓 = 𝑔 ∘ ℎ. 
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If ℎ is a homeomorphism, then 𝑓 and 𝑔 are said to be topologically conjugate. 

Consequently,  ℎ𝑛 ∘ 𝑓 = ℎ ∘ 𝑔𝑛, ∀𝑛 ∈ ℤ. 

 

Given that a homeomorphism of 𝑆1 preserves the structure and order of orbits, by 

Prop. 1.8, if 𝑓 is topologically conjugate to an irrational rotation, then any orbit 

under 𝑓 will necessarily be dense in the unit circle. This 𝑓 often is referred to as a 

transitive homeomorphism. We will need one more definition before studying 

rotation numbers.  

 

Def. 1.10 Let 𝑆(𝒥) be set of maps 𝑓: 𝒥 →

𝒥, where 𝐽 is a closed interval, with the 

following properties: 

1. 𝑓 has a unique point of discontinuity 

𝑐 = 𝑐(𝑓).  

2. lim
𝑥→𝑐−

𝑓(𝑥) is the right endpoint of 𝒥, 

and lim
𝑥→𝑐+

𝑓(𝑥) = 𝑓(𝑐) is the left 

endpoint of 𝒥 

3. 𝑓 is monotone increasing in each 

component of 𝒥\{𝑐}.  

4. If the endpoints of 𝐽 are {𝑎, 𝑏}, then 

𝑓(𝑎) = 𝑓(𝑏) 

 

The set of circle homeomorphisms without fixed points (hence must be 

orientation-preserving) identifies with 𝑆(𝒥), if we identify the two endpoints of 𝒥 

Figure 2 An example of an element in 𝑆(𝒥). 
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(i.e. 𝐻𝑜𝑚𝑒𝑜+(𝑆1) ≅ 𝑆(𝒥)). Moreover, the set of rotations on 𝑆1 can be identified 

with the subset of piecewise linear maps 𝐼([0,1]) ⊂ 𝑆(𝒥).  

 

1.2 Rotation number and combinatorics 

Now we present the construction of rotation numbers in de Melo and van Strien’s 

book [[2], Chapter I]. There are certainly similar, precedented works done by others, 

yet by far this description of construction is the most detailed version. 

Def. 1.11 Let 𝑓 ∈ 𝑆(𝒥), let the interiors of the two connected components of J be 

denoted as J’ and J’’; in particular, by definition of 𝑆(𝒥), one of such intervals will be 

mapped into the other. We will let J’ be such that 𝑓(𝐽′) ⊂ 𝐽′′.  

Define also 𝑎(𝑓) = min{𝑖 ∈ ℤ| 𝑓𝑖+1(𝐽′)\⋂𝐽′ ≠ ∅}. 

Remark Homeomorphisms will map intervals to intervals; moreover, they map the 

endpoints to endpoints (easy to prove). So, if 𝐽 = [𝑎, 𝑏], and 𝐽′ = (𝑐, 𝑏), then 𝑓(𝐽′) =

(𝑎, 𝑓(𝑏)) = (𝑎, 𝑓(𝑎)), exactly by definition 𝑆(𝒥). 

Def. 1.12 Let 𝑓 ∈ 𝑆(𝒥), and suppose for some closed interval 𝐼 ⊂ 𝐽, 𝑂𝑓(𝑥)⋂𝐼 is non-

empty, then we define the first return map of 𝑓  to interval I, 𝑅(𝑓): 𝐼 → 𝐼 , as  

𝑅(𝑓)(𝑥) = 𝑓𝑘(𝑥)(𝑥), where 𝑘(𝑥) = min{𝑖 ≥ 1| 𝑓𝑖(𝑥) ∈ 𝐼}. 

The following is a lemma presented in de Melo’s book ([2], Lemma 1.2) in order to 

inductively define the sequence 𝑎1, 𝑎2, … that is closely related to both the dynamics 

of J’ under 𝑓 and the rotation number 𝜌(𝑓). The construction is also similar to the 

renormalization of 𝑓  which is frequently used in other advanced works (see [2] 

Chapter IV). 

Lemma 1.13 Let 𝑓 ∈ 𝑆(𝒥)  with discontinuity point 𝑐 = 𝑐(𝑓),  𝐽′, 𝐽′′ 𝑎𝑛𝑑 𝑎(𝑓)  the 

same in Def. 2.1, and 𝐽(𝑓) = 𝑐𝑙(𝑓𝑎(𝑓)+1 + 𝐽′). Then 

1. 𝑎(𝑓)  is the smallest integer such that the closure of 𝐽′ ∪ 𝑓(𝐽′) ∪···∪ 𝑓𝑎(𝑓)+1(𝐽′) 

covers the circle; these intervals lied ordered and are adjacent with disjoint 

interiors; 
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2. If 𝑓𝑎(𝑓)(𝐽′) contains c in its closure, then 𝑓𝑎(𝑓)+1(𝐽′) = 𝐽′ = 𝐽(𝑓), 𝑓𝑎(𝑓)+1(𝑐) = 𝑐. 

Then 𝑅(𝑓) to 𝐽(𝑓) is 𝑓𝑎(𝑓)+1, and it has fixed points in 𝜕𝐽(𝑓); 

3. Otherwise, 𝐽(𝑓)  strictly contains 𝐽′′ , 𝑅(𝑓)  to 𝐽(𝑓)  is in 𝑆( 𝐽(𝑓)) ; 𝑅(𝑓)  maps 𝐽′′ ∩

𝐽(𝑓) into 𝐽′, and  

𝑅(𝑓) = {
(𝑓|𝐽′′)𝑎(𝑓) ∘ (𝑓|𝐽′)(𝑥)                  𝑥 ∈ 𝐽′

(𝑓|𝐽′′)(𝑥)                         𝑥 ∈ 𝐽′′ ∩ 𝐽(𝑓)
 

Proof. For (1), by assumption, 𝑓(𝐽′) ⊂ 𝐽′′, and suppose 𝐽′′ is (𝑎, 𝑐), 𝐽′ = (𝑐, 𝑏), 𝑓(𝐽′) =

(𝑎, 𝑓(𝑏)) = (𝑎, 𝑓(𝑎))  by definition of 𝑆(𝒥) , i.e. 𝑓(𝐽′) , 𝐽′′  share a common endpoint; 

similarly, 𝑓2(𝐽′′), 𝑓(𝐽′)  are disjoint and share a common endpoint, and so are 

𝑓𝑘(𝐽′), 𝑓𝑘+1(𝐽′) etc.  

By definition of 𝑎(𝑓), if 𝑓𝑎(𝑓)(𝐽′)  contains 𝑐 in its closure, i.e. 𝑐𝑙(𝑓𝑎(𝑓)(𝐽′)) ∩ (𝐽′) =

{𝑐}, 𝑐 is an endpoint of this interval and 𝑓𝑎(𝑓)+1 maps 𝐽′ onto itself and 𝑓𝑎(𝑓)+1(𝑐) =

𝑐. If 𝑐 is not contained in the closure of 𝑓𝑎(𝑓)(𝐽′) then 𝑓𝑎(𝑓)+1(𝐽′) contains 𝑐 in its 

interior, as 𝐽(𝑓) is an well-defined interval. From definition 𝑎(𝑓) + 1 is the smallest 

integer such that 𝑓𝑎(𝑓)+1(𝑥) ∈ 𝐽(𝑓) for each 𝑥 ∈ 𝐽′ = 𝐽′ ∩ 𝐽(𝑓). Now consider 𝐽′′ ∩

𝐽(𝑓). To be more explicit, we assume that 𝐽′′ is to the left of 𝐽′; if 𝐽′′ is to the right of 

𝐽′ then simply interchange the words ‘left’ and ‘right’ in what follows. In this case, 

the image of 𝐽′′ ∩ 𝐽(𝑓) under 𝑓 is equal to 𝐽′ ∖ 𝑓𝑎(𝑓)+1(𝐽′). It follows that 𝑓 maps 𝐽′′ ∩

𝐽(𝑓) into 𝐽′ and that its image contains the right endpoint of 𝐽′. Therefore, the return 

map 𝑅(𝑓) has such properties.   ∎ 

This lemma verifies the existence of the integer 𝑎1 = 𝑎(𝑓) + 1. In order to get 𝜌(𝑓), 

we will repeat this process unless a periodic point of 𝑓 occurs. 

Let 𝐽0 = 𝐽, 𝜙0: 𝐽0 → 𝐽0, 𝜙0 = 𝑓, we let 𝑎1 = ∞ if 𝑓 has fixed points and otherwise we 

define 

𝑎1 = {
𝑎(𝑓) + 1  if 𝐽′ is to the right of 𝐽′′

1  if 𝐽′ is to the left of 𝐽′′

𝐽1 = {
𝐽(𝜙0)  if 𝐽′ is to the right of 𝐽′′

𝐽  if 𝐽′ is to the left of 𝐽′′
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𝜙1 = {
𝑅(𝑓)  if 𝐽′ is to the right of 𝐽′′

𝑓  if 𝐽′ is to the left of 𝐽′′
 

We want to make sure  𝜙1  maps the left component of 𝐽1 ∖ {𝑐}  into the right 

component.  

Now suppose that 𝑛 ≥ 2 and that 𝐽1, … , 𝐽𝑛−1, 𝜙1, … , 𝜙𝑛−1 are defined, and that 

𝜙𝑛−1: 𝐽𝑛−1 → 𝐽𝑛−1 has no fixed points. Then define the interval 𝐽𝑛, the return 

map 𝜙𝑛 to 𝐽𝑛, and the integer 𝑎𝑛 inductively by 

𝐽𝑛 = 𝐽(𝜙𝑛−1),  𝜙𝑛 = 𝑅(𝜙𝑛−1): 𝐽𝑛 → 𝐽𝑛 

𝑎𝑛 = 𝑎(𝜙𝑛−1) 

On the other hand, if 𝜙𝑛−1: 𝐽𝑛−1 → 𝐽𝑛−1 has fixed points then we let 𝑎𝑛 = ∞ and we 

stop the inductive definition.  

If 𝐽′ is to the right of 𝐽′′ we have: 

𝑎1 = 𝑎(𝑓) + 1,  𝜙1 = 𝑅(𝑓)

𝑎𝑛 = 𝑎(ℛ
𝑛−1(𝑓)), 𝜙𝑛 = 𝑅

𝑛(𝑓) for all 𝑛 = 2,3, …
 

Otherwise: 

𝑎1 = 1,  𝜙1 = 𝑓 

𝑎𝑛 = 𝑎(𝑅
𝑛−2(𝑓)),  𝜙𝑛 = 𝑅

𝑛−1(𝑓) for all 𝑛 = 2,3, … 

𝜙𝑛  is the first return map of 𝑓  to 𝐽𝑛.  In particular, if 𝑓  has no periodic points the 

construction never stops. If 𝐽′ is to the left of 𝐽′′ then 𝑎1 = 1, 𝐽1 = 𝐽. It follows that 𝜙1 

always maps the left component of 𝐽1 ∖ {𝑐} into the right component. Let 𝐽𝑛
′  be the 

interior of the left component of 𝐽𝑛 ∖ {𝑐} if 𝑛 is odd and of the right component if 𝑛 

is even. Denote the interior of the other component of 𝐽𝑛 ∖ {𝑐}  by 𝐽𝑛
′′.  From the 

previous lemma, the role of the right and left components of 𝐽𝑛 ∖ {𝑐} is interchanged 

in each step of the induction.  
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More precisely,  𝐽𝑛
′ = 𝐽𝑛−1

′′ ∩ 𝐽𝑛 and 𝐽𝑛
′′ = 𝐽𝑛−1

′ ∩ 𝐽𝑛 = 𝐽𝑛−1
′ . 

By construction 𝜙𝑛 maps 𝐽𝑛
′  into 𝐽𝑛

′′ for all 𝑛 ≥ 1, as 𝜙𝑛 ∈ 𝑆(𝐽𝑛−1) for which 𝜙𝑛 is 

defined. Also, 𝜙1 ∣ 𝐽1
′ = 𝑓 and 𝜙1 ∣ 𝐽1

′′ = 𝑓𝑎1 . Also, by induction one can prove: 

𝜙𝑛 ∣ 𝐽𝑛
′′ = (𝜙𝑛−1 ∣ 𝐽𝑛−1

′′ )𝑎(𝜙𝑛−1) ∘ (𝜙𝑛−1 ∣ 𝐽𝑛−1
′ ) 

and 

𝜙𝑛|𝐽𝑛
′ = 𝜙𝑛−1|𝐽𝑛−1

′′  

Remark Notice how the intervals {𝐽𝑛}𝑛≥1  are ‘shrinking’ near the unique 

discontinuity point 𝑐 = 𝑐(𝑓) , so intuitively the rotation number below is closely 

related to the dynamics of 𝑐 under 𝑓.  

 

Def. 1.14 A continued fraction, 𝛼 = [0; 𝑎1, 𝑎2, . . . , 𝑎𝑛] is defined as:  

[0; 𝑎1, 𝑎2, … , 𝑎𝑛] =
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

⋱ +
1
𝑎𝑛

 

From the construction above, the rotation number of 𝑓: 𝑆1 → 𝑆1, a homeomorphism 

without fixed points, 𝜌(𝑓), is given by: 

𝜌(𝑓) = [0; 𝑎1, 𝑎2, … , 𝑎𝑛, … . ] if the procedure described before never stops,  

or [0; 𝑎1, 𝑎2, … , 𝑎𝑘], 𝑓𝑜𝑟 𝑘 = max{𝑗 ∈ ℕ| 𝑎𝑗 ≠ ∞} if 𝑓 has a periodic point of period k 

in the interval 𝐽𝑘. 

Remark It can be checked that the 𝑛 th convergent, 𝑟𝑛 = [0; 𝑎1, 𝑎2, … , 𝑎𝑛] = 𝑝𝑛/𝑞𝑛 

satisfies the Fibonacci type recursions (see [22] for more advanced analysis of this 

number). 

𝑝𝑛 = 𝑎𝑛𝑝𝑛−1 + 𝑝𝑛−2, 𝑝0 = 0, 𝑝1 = 1 

𝑞𝑛 = 𝑎𝑛𝑞𝑛−1 + 𝑞𝑛−2, 𝑞0 = 1, 𝑞1 = 𝑎1 
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This continued fraction is necessarily an irrational number if and only if the 

sequence {𝑎𝑛}𝑛≥1 is infinite; otherwise 𝜌(𝑓) ∈ ℚ. The following is a classical result 

that Poincare  has proven in his work which relates this number with conjugacy 

classification (see [23] Chapitre XV). 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏  Let 𝑓  be an orientation-preserving circle homeomorphism without 

periodic points, then there is a unique rotation 𝑅𝜌(𝑓) ∈ 𝐼([0,1]) such that there is a 

surjective, continuous, and monotone function ℎ, with  

ℎ ∘ 𝑓 = 𝑅𝜌(𝑓) ∘ ℎ 

Where 𝑅𝜌(𝑓)(𝑥) = 𝑥 + 𝜌(𝑓)  (𝑚𝑜𝑑 1), and ℎ is a semi-conjugacy between these two 

maps. 

Proof of this theorem will be omitted, one can find a structured proof that requires 

great machinery using the construction above and symbolic dynamics again in [2] 

Chapter I, or the more traditional ways via lifts. In any case, we will take this result 

as a starting point for further investigation of circle maps. 

A natural question is how semi-conjugacy differs from topological conjugacy, where 

ℎ is required to be a homeomorphism; they are, in fact, quite different in the sense 

that structure of dynamics may not be perfectly preserved by semi-conjugacy, which 

is exactly the reason that Denjoy has shown in [1] that irrational rotation numbers 

allow the existence of wandering sets, a concept hugely important in the study of 

minimal sets in Section II&III. In any case, we can prove the following general 

statement first.  

Lemma 1.15 Let 𝑓: 𝑋 → 𝑋 , 𝑔: 𝑌 → 𝑌  where 𝑋, 𝑌  are compact metric spaces, and 

suppose exists a semi-conjugacy ℎ: 𝑋 → 𝑌 such that ℎ ∘ 𝑓 = 𝑔 ∘ ℎ, then if �̃� = 𝑋/~, 

where 𝑥~𝑦  if and only if  ℎ(𝑥) = ℎ(𝑦) , then 𝑓  descends to the function 𝑓: �̃� → �̃� , 

which is conjugate to 𝑔. 
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Proof. Let’s first check if 𝑓 is well-defined. Suppose ℎ(𝑥) = ℎ(𝑦), then by definition 

of semi-conjugacy, ℎ ∘ 𝑓(𝑥) = 𝑔 ∘ ℎ(𝑥) = 𝑔 ∘ ℎ(𝑦) = ℎ ∘ 𝑓(𝑦),  so 𝑓(𝑥)~𝑓(𝑦)  as 

required. 

Now to construct the conjugacy, let ℎ̃: �̃� → 𝑌, defined by  ℎ̃(𝑥) = ℎ(𝑞−1(𝑥)), where 

𝑞: 𝑋 → �̃�  is the quotient map. It is also well-defined as 𝑞(𝑥) = 𝑞(𝑦)  if and only if 

𝑥~𝑦 ↔ ℎ(𝑥) = ℎ(𝑦) . ℎ̃  is injective, follows from the relation given on 𝑋 ; it is also 

surjective because the semi-conjugacy ℎ is itself surjective. Therefore ℎ̃ is a bijection. 

ℎ̃  is also continuous because given open set 𝐴 ⊂ 𝑌,  ℎ̃−1(𝐴) = 𝑞(ℎ−1(𝐴))  by 

definition, where 𝑞 is an open mapping and ℎ is a continuous mapping, so ℎ−1(𝐴) is 

open, therefore so is ℎ̃−1(𝐴). �̃� is the quotient space of a compact space hence itself 

compact, and a continuous bijection between such spaces will always be a 

homeomorphism, so 𝑓 is indeed conjugate to 𝑔. ∎ 

Remark  

1. Perhaps it will be easier to see how rational rotation number leads to periodic 

points using lifts: by 1.6 𝐹𝑚 lifts 𝑓𝑚, hence 𝜌(𝐹𝑚) = lim
𝑘→∞

𝐹𝑚𝑘(𝑥)−𝑥

𝑘
=

lim
𝑘→∞

𝑚 ∙
𝐹𝑚𝑘(𝑥)−𝑥

𝑚𝑘
= 𝑚 lim

𝑛

𝐹𝑛(𝑥)−𝑥

𝑛
= 𝑚𝜌(𝐹), and it is easy to see that 

𝜌(𝐹𝑚) (𝑚𝑜𝑑 1) = 𝜌(𝑓𝑚) = 0 implies 𝑓𝑚 has a fixed point.  

2. In Lemma 1.15, 𝑌 needs only to be Hausdorff.  

3. The idea of collapsing 𝑆1 into a smaller circle depending on the dynamics of the 

circle homeomorphism that is semi-conjugate to some irrational rotation, will be 

revisited in §3.1, Prop. 3.1. 

This lemma tells us that if 𝑓 ∈ 𝐻𝑜𝑚𝑒𝑜+(𝑆1) has an irrational rotation number, then 

its dynamics will ‘contain’ the dynamics of an irrational rotation 𝑅, and by Prop. 1.8 

any orbit under 𝑅  is dense in 𝑆1,  i.e. 𝑐𝑙(𝑂𝑅(𝑥)) = 𝑆
1 = 𝜔(𝑥), ∀𝑥 ∈ 𝑆1 , which is 

certainly not true for all such 𝑓 with irrational rotation number; there are infinitely 

many counterexamples and one can find in Denjoy’s original works, or two 
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structured counterexamples in  [5] Part 1 and [9]. We will now introduce Denjoy’s 

theorems. 

 

1.3 Denjoy’s results 

Def. 1.16 Call 𝐽 a wandering interval of map 𝑓 if  

i. 𝐽, 𝑓(𝐽), 𝑓2(𝐽),···  are pairwise disjoint, and  

ii. ⋃ 𝜔(𝑥)𝑥∈𝐽  is not a single periodic orbit. 

This turns out to be a useful and universal tool in analyses of other dynamical 

systems. Immediately we know that any irrational rotation map does not have 

wandering intervals, and a homeomorphism 𝑓: 𝑆1 → 𝑆1 with periodic points cannot 

have wandering intervals (this follows from Fact 1.7). In fact, 𝑓  without periodic 

points is conjugate to an irrational rotation if and only if 𝑓 does not have a wandering 

interval. Based on this fact, the following two theorems proven by Denjoy in [1] give 

classification of 𝒞1 diffeomorphisms.  

Def. 1.17 A function 𝑓: 𝐼 → ℝ  on the closed interval 𝐼  is said to have bounded 

variation if sup
𝑃∈𝒫

𝑉𝑎𝑟(𝑓, 𝑃) < ∞, where 𝑃 = {𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛} is a partition on 𝐼, 𝒫 

is the set of all partitions on 𝐼, and 𝑉𝑎𝑟(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)
𝑛
𝑖=1 |. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐 Suppose 𝑓 is a 𝒞1 diffeomorphism with irrational rotation number and 

the derivative 𝐷𝑓 (and the derivative of 𝑓−1) have bounded variation, then 𝑓 has no 

wandering intervals and hence is topologically conjugate to the rigid rotation 

𝑅𝜌(𝑓)(𝑥) = 𝑥 + 𝜌(𝑓)  𝑚𝑜𝑑 1. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑 There exist 𝒞1diffeomorphisms 𝑓 with irrational rotation number such 

that 𝑓 has non-empty wandering intervals.  
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Proof of the first classical theorem will be included here, whereas the second one 

can be proven by providing any concrete example so, as before, can be found in [5] 

Chapter I; M.Herman [6] even provided Denjoy counterexamples for 𝒞1+𝜆 

diffeomorphisms, where 𝜆 < 1. For Theorem 2, we will follow the proof given in the 

book by de Melo and van Strien, consistent with Lemma 1.13 and its consequent 

construction; another component of the proof is the distortion of derivatives. 

Certainly there are more and maybe simpler ways of proving Theorem 2, for 

example there is a one by R.S.Mackay’s [7] using commuting pair system, or another 

in M.Brin and G.Stuck’s book (see [12]chapter 7) via Haar measure. 

Recall from the construction of 𝜌(𝑓),  

𝜙𝑛 ∣ 𝐽𝑛
′ = 𝑓𝑞𝑛−1 and 𝜙𝑛 ∣ 𝐽𝑛

′′ = 𝑓𝑞𝑛           (▴) 

where 𝑞𝑛 is defined inductively by 

𝑞0 = 1, 𝑞1 = 𝑎1
𝑞𝑛+1 = 𝑞𝑛−1 + 𝑎𝑛+1𝑞𝑛 for 𝑛 ≥ 1

 

Since 𝜙𝑛: 𝐽𝑛 → 𝐽𝑛 is a map in 𝑆(𝐽𝑛) by Lemma 1.13, 𝐽𝑛 = [𝑓
𝑞𝑛−1(𝑐), 𝑓𝑞𝑛(𝑐)], which is 

an interval that contains 𝑐 in its interior, otherwise 𝑓 has a periodic point. Therefore, 

𝐽𝑛
′ = (𝑐, 𝑓𝑞𝑛(𝑐)), and 𝐽𝑛

′′ = (𝑐, 𝑓𝑞𝑛−1(𝑐)). 

Furthermore, we can make the statement that for 𝑛 ≥ 1, 1 ≤ 𝑗 ≤ 𝑞𝑛+1: 

 𝑓𝑗(𝑐) ∈ 𝐽𝑛 if and only if 𝑗 = 𝑞𝑛−1 + 𝑖𝑞𝑛, for some 𝑖 ∈ {0, 𝑎1, … , 𝑎𝑛+1}.  

Lemma 1.16 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓 ∈ 𝑆(𝒥) has no periodic points. The union of ⋃ 𝑓𝑖(𝐽𝑛
′ )𝑞𝑛−1−1

𝑖=0  

and  ⋃ 𝑓𝑖(𝐽𝑛
′′)𝑞𝑛

𝑖=0  tiles the interval 𝒥 (or 𝑆1), and these intervals are disjoint. 

Proof. The first return map of 𝑓 to 𝐽𝑛
′ ∪ 𝐽𝑛

′′ is equal to 𝑓𝑞𝑛−1  on 𝐽𝑛
′  and 𝑓𝑞𝑛  on 𝐽𝑛

′′ by 

(▴) and the images of 𝐽𝑛
′ , 𝐽𝑛

′′ under the first return map are disjoint, and their orbits 

before the first return time as well. Now take 𝑥 ∈ 𝒥 and let 𝑘 = min{𝑖 ∈ ℤ|𝑓−𝑖(𝑥) ∈

𝐽𝑛 = 𝑐𝑙(𝐽𝑛
′ ∪ 𝐽𝑛

′′)}. Such an integer 𝑘 certainly exists because the union of 

𝐽𝑛
′ , … , 𝑓𝑞𝑛+1(𝐽𝑛

′ ) covers the interval in the same sense as in Lemma 1.13.  
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So either: if 𝑓−𝑘(𝑥) is in the closure of 𝐽𝑛
′  then because 𝐽𝑛

′  returns within time 𝑞𝑛−1 

to the closure of 𝐽𝑛
′ ∪ 𝐽𝑛

′′, namely 𝐽𝑛one has 𝑘 < 𝑞𝑛−1 and therefore 𝑥 is in the 

closure of 𝑓𝑘(𝐽𝑛
′ ); or: 𝑥 is in the closure of 𝑓𝑘(𝐽𝑛

′′) for some 𝑘 < 𝑞𝑛. So in both cases, 

the result holds true. ∎ 

 

Def. 1.17 Suppose 𝑓:𝑁 → 𝑁 is a 𝒞𝛼  map with 𝛼 ≥ 1 on𝑁 = 𝑆1 𝑜𝑟 [0,1], and suppose 

that 𝐼 ⊂ 𝑋 is an interval such that 𝐷𝑓(𝑥) = 𝑓′(𝑥) ≠ 0, ∀𝑥 ∈ 𝐼, then the distortion of 

𝑓 in 𝐼 is defined as: 

𝐷𝑖𝑠𝑡(𝑓, 𝐼) = sup
𝑥,𝑦∈𝐼

log
|𝐷𝑓(𝑥)|

|𝐷𝑓(𝑦)|
 

 

Lemma 1.18 Let 𝑓:𝑁 → 𝑁  be a 𝒞1  map such that 𝑓′(𝑥) ≠ 0, ∀𝑥 ∈ 𝑁,  and the map 

𝑥 ↦ log |𝐷𝑓(𝑥)|  has bounded variation ≤ 𝐶, 𝐶 ∈ ℝ . Then for any interval 𝑇 ⊂ 𝑁 

such that 𝑁, 𝑓(𝑁),… , 𝑓𝑛−1(𝑁) are disjoint, we have 

𝐷𝑖𝑠𝑡(𝑓𝑛, 𝑇) ≤ 𝐶 𝑑𝑖𝑎𝑚(𝑁) 

Proof. By chain rule, 

𝑙𝑜𝑔
|𝐷𝑓𝑛(𝑥)|

|𝐷𝑓𝑛(𝑦)|
=∑ 𝑙𝑜𝑔

|𝐷𝑓(𝑓𝑖(𝑥))|

|𝐷𝑓(𝑓𝑖(𝑦))|

𝑛−1

𝑖=0
   

Given that 𝑓𝑖(𝑥), 𝑓𝑖(𝑦) ∈ 𝑓𝑖(𝑇) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑇, taking supremum at both sides we 

will get 𝐷𝑖𝑠𝑡(𝑓𝑛, 𝑇) ≤ ∑ 𝐷𝑖𝑠𝑡(𝑓, 𝑓𝑖(𝑇)𝑛−1
𝑖=0 ).  

Also, ∀𝑥, 𝑦 ∈ 𝑓𝑖(𝑇), log
|𝐷𝑓𝑖(𝑥)| 

|𝐷𝑓𝑖(𝑦)|
= log|𝐷𝑓(𝑥)| − log|𝐷𝑓(𝑦)| ≤ 𝑉𝑎𝑟(𝑓|𝑓𝑖(𝑇)) ≤ 𝐶 ∙

|𝑓𝑖(𝑇)|, and given disjointness of 𝑇, ∑ |𝑓𝑖(𝑇)| ≤ 𝑑𝑖𝑎𝑚(𝑁)𝑛−1
𝑖=0 , combining with result 

about will prove the result. ∎ 
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We will need one more dynamical result before marching into the proof of Denjoy’s 

theorem, that is, the limiting behaviour of wandering intervals of circle 

homeomorphisms. 

Lemma 1.19 (Contraction Principle) Suppose 𝑓 ∶  𝑆1  →  𝑆1  is a circle 

homeomorphism has no periodic orbits and 𝐼  is a subinterval of 𝑆1 . Then 

inf
𝑛≥1
{|𝑓𝑛(𝐼)|} =  0, implies that 𝐼 is a wandering interval of 𝑓. 

Proof.  Denote 𝐼𝑛 = 𝑓
𝑛(𝑖𝑛𝑡(𝐼)), and Σ =∪𝑖≥0 𝑓

𝑖(𝐼), then observe the following: 

Case 1: Σ = 𝑆1 . By compactness, there’re 𝐼𝑛1,𝐼𝑛2 , … , 𝐼𝑛𝑘   a finite subcover of 𝑆
1 . By 

Lebesgue Number Lemma, exists 𝛿 > 0 such that every subset having diameter less 

than 𝛿 will be contained in one of 𝐼𝑛1,𝐼𝑛2 , … , 𝐼𝑛𝑘 . Since inf𝑛≥1
{|𝑓𝑛(𝐼)|} =  0, there must 

exist 𝐼𝑙 ⊂ 𝑆
1, for some 𝑙 ∈ ℕ with |𝐼𝑙| < 𝛿, and hence 𝐼𝑗 ∈ {𝐼𝑛𝑖}𝑖=1

𝑘
 such that 𝐼𝑙 ⊂ 𝐼𝑗 , so 

𝐼 is not a wandering interval. Wlog we suppose 𝑙 > 𝑗, and note that 𝐼𝑙 = 𝑓
𝑙−𝑗(𝐼𝑗), so 

𝑓𝑙−𝑗  has a periodic point in the closure of 𝐼𝑗 , a contradiction. 

Case 2: Σ ≠ 𝑆1.  If there is no component 𝑈 𝑜𝑓 𝛴  such that some iterate of 𝑈 

intersects with 𝑈 , then 𝑈  and hence 𝐼  are wandering intervals. If there is a 

component 𝑈 𝑜𝑓 𝛴  such that 𝑓𝑛(𝑈) ∩  𝑈 ≠  ∅  for some 𝑛 ≥  0 , then 𝑓𝑛(𝑈)  ⊆  𝑈 

and hence 𝑓𝑛 has a periodic point in the closure of 𝑈. This is again a contradiction. 

∎ 

 

And now we shall begin the proof of Theorem 2. 

Proof of Theorem 2. Let 𝑉 be the upper bound of 𝑉𝑎𝑟(log|𝐷𝑓|) on 𝑆1, and suppose 

by contradiction that some 𝐽 ⊂ 𝑆1 is a wandering interval. Let 𝑞𝑛 be the same as in 

Lemma 1.16, and 𝑇 = [𝑓−𝑞𝑛(𝐽), 𝐽] be the smallest interval containing 

𝐽 𝑎𝑛𝑑 𝑓−𝑞𝑛(𝐽). By Lemma 1.18, 𝐷𝑖𝑠𝑡(𝑓𝑞𝑛 , 𝑇) ≤ 𝑉, if we take the diameter of 𝑆1 to 
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be 1. Also by MVT, there exist 𝑥 ∈ 𝐽 and 𝑦 ∈ 𝑓−𝑞𝑛(𝐽) such that |𝐷𝑓𝑞𝑛(𝑥)| =

|𝑓𝑞𝑛(𝐽)|

|𝐽|
, |𝐷𝑓𝑞𝑛(𝑦)| =

|𝐽|

|𝑓−𝑞𝑛(𝐽)|
. These equations hold for all 𝑛 ∈ ℕ. 

Then for all 𝑛,  
|𝐽|2

|𝑓𝑞𝑛(𝐽)||𝑓−𝑞𝑛(𝐽)|
≤ exp(𝐷𝑖𝑠𝑡(𝑓𝑞𝑛 , 𝑇)) ≤ exp(𝑉). 

 |𝐽|  is a fixed number, so this means  
1

|𝑓𝑞𝑛(𝐽)||𝑓−𝑞𝑛(𝐽)|
  is finite; but by contraction 

principle, this means |𝑓𝑞𝑛(𝐽)| does not tend to 0, and hence by contradiction 𝐽 is not 

a wandering interval. ∎ 

Denjoy’s theorem on topological conjugacy of circle diffeomorphisms inspired 

people to investigate further for regularities on diffeomorphisms so that such 

conjugacy holds; it is proven in late 20 century that diffeomorphisms satisfying the 

so-called Zygmund condition,  sup
𝑥,𝑡
|
𝑓(𝑥+𝑡)+𝑓(𝑥−𝑡)−2𝑓(𝑥)

𝑡
| ≤  𝐵 < ∞ , which clearly 

owns a similar structure of Dini’s condition on convergence of Fourier sums. 

 

Generally, 𝒞1  and even 𝒞∞  smoothness are not safe (see [9]) for conjugacy to an 

irrational rotation, and the non-existence of wandering sets appears to be the best 

tool of characterisation. A 𝒞𝑘 diffeomorphism without periodic points for 𝑘 ≥ 2 can 

be proven to have no wandering sets since bounded variation of 𝐷𝑓 is guaranteed, 

hence these maps have 𝑆1 as minimal set, we shall prove this in the next section. 

Furthermore, it can be proven that the only alternative is a topological Cantor set, 

hence the following question arises: for what type of Cantor set 𝐾 ⊂ 𝑆1 there exists 

a 𝒞1 map with minimal set 𝐾. We will see some attempts to answer it from D.McDuff 

and later A.Portela, in Section III.  

Another useful result follows from the properties of the set 𝑆(𝒥): consider the map 

𝑓: [0,1) → [0,1) by  

𝑓(𝑥) = {
𝑎 +

1−𝑎

𝑏
𝑥   𝑓𝑜𝑟 0 ≤ 𝑥 < 𝑏

𝑎

1−𝑏
(𝑥 − 𝑏)  𝑓𝑜𝑟  𝑏 ≤ 𝑥 < 1
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This piecewise affine map identifies with some circle homeomorphism, and can be 

further shown to have derivative of bounded variation depending on 𝑎  and 𝑏 . 

Therefore, by controlling the parameters of 𝑓  so that 𝜌(𝑓)  remains irrational, 

Denjoy’s theorem asserts that 𝑓 is conjugate to an irrational rotation map in 𝐼([0,1]). 

In this way, we can extend Denjoy’s results to interval maps. (see [13]) 
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Section II 

Groups  

When analysing the dynamics of a circle map, minimal sets (although we have not 

defined them so far) and wandering intervals are almost always studied together; 

one can easily check that existence of a non-empty wandering interval for some 𝑓 ∈

𝐻𝑜𝑚𝑒𝑜+(𝑆1) implies that its minimal set cannot be dense in 𝑆1, or equivalently, we 

say that the action of such 𝑓 is not minimal or transitive on 𝑆1. Hence minimal set is 

another useful tool to categorise circle maps. In addition, we can consider minimal 

sets for subgroups of circle homeomorphisms. Notice that if 𝑓  is a circle 

homeomorphism without periodic points, then it generates an infinite cyclic group 

itself, so it does make sense to treat all minimal sets, whether they are minimal for a 

single function or a group of functions, as minimal sets of subgroups of 𝐻𝑜𝑚𝑒𝑜(𝑆1). 

Also, while studying other types of dynamical systems, minimal set analysis is still a 

good starting point to examine the system, especially when the phase space is 

compact. A minimal set is strongly invariant when the phase space is compact 

Hausdorff, and if 𝑀  is a minimal set of 𝑓,  then (𝑀, 𝑓|𝑀)  is necessarily a minimal 

system. Moreover, if a system (𝑋, 𝑓)  is minimal, which simply means 𝑋  does not 

contain proper 𝑓 -invariant sets, then it is analog of an ergodic measure in 

topological dynamics. One can find a very detailed research paper on minimal 

dynamical systems and the characterisation of minimal sets for low-dimensional 

systems by S.Kolyada and L’ubomir [15]. 

2.1 Definition and basic properties 

Def. 2.1 Let 𝑓: 𝑆1 → 𝑆1 be a circle homeomorphism, 𝐴 ⊂ 𝑆1 is invariant under 𝑓 or 

𝑓-invariant if 𝑓(𝐴) ⊂ 𝐴. 
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A minimal set 𝐾 ⊂ 𝑆1 is a non-empty, compact subset invariant under 𝑓 which has 

no proper non-empty invariant subset.  

We will inherit the concept of wandering interval for the following: 

Ω(𝑓) ≔ {𝑥 ∈ 𝑆1|𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓} , where 𝑥  is a wandering point 

means that ∃𝑈 ∋ 𝑥 an open interval such that 𝑓𝑘(𝑈) ∩ 𝑈 = ∅, ∀𝑘 ∈ ℤ.  

 

Prop. 2.2 Let 𝑓 ∈ 𝐻𝑜𝑚𝑒𝑜+(𝑆1) without periodic points, then 𝜌(𝑓) is irrational and: 

i. Ω(𝑓) = 𝜔(𝑥) = 𝛼(𝑥), ∀𝑥 ∈ 𝑆1 

ii. Ω(𝑓) is the minimal set of 𝑓 

iii. Either Ω(𝑓)  = 𝑆1 or Ω(𝑓)  is a nowhere dense perfect set. 

Proof.   

(i) Let 𝑥 ∈ 𝑆1, 𝑎𝑛𝑑 (𝑎, 𝑏)  be a component in 𝑆1\𝜔(𝑥) , then 𝑓𝑘((𝑎, 𝑏))  is also in 

𝑆1\𝜔(𝑥)  for all 𝑘 ∈ ℤ . Also, {𝑓𝑗([𝑎, 𝑏])|𝑗 ∈ ℤ}  must be pairwise disjoint 

because otherwise 𝑓  would have periodic points, and hence (𝑎, 𝑏)  is a 

wandering interval of 𝑓 . Therefore, (𝑆1\𝜔(𝑥)) ⊂ (𝑆1\Ω(𝑓))  which implies 

Ω(𝑓) ⊂ 𝜔(𝑥) , and also 𝜔(𝑥) ⊂ Ω(𝑓)  is clear by definition, so that Ω(𝑓) =

𝜔(𝑥) , and this statement is indeed independent of 𝑥 . Ω(𝑓) = 𝛼(𝑥)  can be 

proven in the same way for all 𝑥 ∈ 𝑆1. 

(ii) Ω(𝑓) is a closed set, and the unit circle is compact hence Ω(𝑓) is compact. It 

is invariant exactly by the definition of limit sets, and any proper subset 

having the same properties will be empty. 

(iii) Let 𝜕Ω(𝑓)  be the boundary of Ω(𝑓) , by closedness 𝜕Ω(𝑓) ⊂ Ω(𝑓) , and 

𝑓(𝜕Ω(𝑓)) = 𝜕𝑓(Ω(𝑓)) = 𝜕Ω(𝑓),  by invariant property, hence either 𝜕Ω(𝑓) =

∅ or 𝜕Ω(𝑓) = Ω(𝑓). In either case, the set is perfect by definition of 𝜔(𝑥). The 

first case implies that Ω(𝑓) = 𝑆1 and in the second case, 𝑓 is invertible and 
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by definition of 𝜔(𝑥), no points will be isolated, so it is a perfect set whose 

interior is empty. Therefore it is a topological Cantor set. ∎ 

 

The definition of Ω(𝑓) ensures its uniqueness, and 𝜔(𝑥) is non-empty implies that 

any circle homeomorphism will attain a unique minimal set. Also, the proposition 

implies immediately the following: a circle homeomorphism with minimal Cantor 

set 𝐾 is only semi-conjugate to an irrational rotation, since a homeomorphic 

conjugacy will preserve the topological structure of the orbits; equivalently, if there 

is a non-empty interval 𝐽 ⊂ 𝑆1\𝜔(𝑥), it is a wandering interval of 𝑓.  

The following is an example of a subgroup of 𝐻𝑜𝑚𝑒𝑜(𝑆1) attaining a Cantor 

minimal set.  

Let 𝑓 be the rotation by 2𝜋/3 angle, and 𝑃 inside the 

unit circle with Euclidean distance greater than 2 −

√3 from the centre. Consider a rotation with centre 

𝑃 by angle 𝜋, let 𝑔 be the real-analytic 

diffeomorphism on the circle corresponding to this 

rotation. Then, < 𝑓, 𝑔 > has a Cantor minimal set, 

demonstrated above by figure 3.  

 

Remark This group corresponds with the so-called 

‘modular group’ 𝑃𝑆𝐿(2, ℤ), which has a finite group representation < 𝐸, 𝑃: 𝐸2 =

𝑃3 = 𝐼𝑑 >. But this correspondence is NOT a topological conjugacy, as on can prove 

that < 𝑓, 𝑔 > 

does not satisfy ‘convergence property’ in the next section, or verify that the limit 

set of 𝑃𝑆𝐿(2, ℤ) is dense in the boundary.  

Figure 3 An example of a subgroup 

with minimal Cantor set from [16] 
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2.2 Minimal sets of subgroups of circle homeomorphisms 

In this subsection, we are going to investigate some group results which allow us to 

link subgroups of circle homeomorphisms which satisfy the ‘convergence property’ 

defined below, with Fuchsian subgroups of 𝑃𝑆𝐿(2,ℝ)  or 𝑐𝑜𝑛(1) , a special type of 

subgroups frequently studied in the theory of hyperbolic geometry. This idea may 

not make so much sense at first glance, since these groups act on quite different 

domains, namely  𝑆1  and the complex half-plane ℍ2  (or the Poincare  disc 𝔻2 ) 

respectively. However, there is a powerful, difficult theorem (its proof will not be 

provided in this paper; check [11] theorem 2A, 2B and [14]) due to Casson-Jungreis, 

Gabai, Hinkkanen, and Tukia that says convergence property can further lead to 

topological conjugacy between circle homeomorphism subgroups and Fuchsian 

subgroups, therefore we can study them in pairs. It is a well-known fact that 

Fuchsian groups attain unique limit sets on the boundary of hyperbolic domains, and 

the structure of limit sets coincides with the three cases of minimal sets of circle 

homeomorphism subgroups. Therefore, since topological conjugacy preserves 

structures of limit sets/minimal sets, given a Fuchsian subgroup, we can apply 

techniques derived in hyperbolic geometry theory to obtain properties of the 

minimal set of its corresponding subgroup in 𝐻𝑜𝑚𝑒𝑜(𝑆1).  

Prop. 2.5 and Cor. 2.7 below confirm that convergence property does ensure 

topological conjugacy between circle homeomorphisms and transformations in 

𝑃𝑆𝐿(2,ℝ), hence we are able to categorise circle homeomorphisms in the same way 

categorising Mo bius transformations. Theorem 5 concludes further that convergent 

subgroups are topologically conjugate to subgroups of 𝑃𝑆𝐿(2,ℝ), Theorem 6 & 7 

will then give all possible situations in which discrete convergence groups are 

conjugate to Fuchsian groups. Some results from hyperbolic geometry relating to 

limit sets of Fuchsian groups will be given as an evidence of resemblance between 

minimal sets of circle homeomorphism subgroups and limit sets of Fuchsian 

subgroups, and how we can use hyperbolic geometry theory to enrich analysis 

techniques for circle homeomorphism groups. 
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Let us first prove the general version of Prop. 2.2 for minimal sets of subgroups of 

𝐻𝑜𝑚𝑒𝑜(𝑆1).  The orbit of some 𝑥 ∈ 𝑆1  under a subgroup Γ ≤ 𝐻𝑜𝑚𝑒𝑜(𝑆1)  means 

{𝑓(𝑥): 𝑓 ∈ Γ}. It is often denoted as 𝑥Γ in group theory settings, and a minimal set in 

this section means a subset Λ ⊂ 𝑆1 such that ΛΓ = Λ. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒 If 𝛤 is a subgroup of 𝐻𝑜𝑚𝑒𝑜(𝑆1 ), then one (and only one) of the 

following possibilities occurs:  

i. there exists a finite orbit;  
ii. all the orbits are dense in 𝑆1, 𝑆1 is invariant under Γ ;  
iii. there exists a unique minimal invariant compact set which is 

homeomorphic to the Cantor set. Such set is contained in the set of 

accumulation points of every orbit. 
Proof (original version can be found in [16] §2.1).  

Obviously only one of the above items can happen. A finite orbit can occur when, for 

example, the group is generated by a single homeomorphism with finitely many 

fixed points or periodic points.  

The family of non-empty closed invariant subsets in 𝑆1  is partially ordered by 

inclusion, and since the unit circle is compact, it satisfies the non-empty intersection 

property, so a nested sequence of closed sets will attain a non-empty closed set. 

Zorn’s lemma hence concludes the existence of a unique minimal invariant set Λ. Let 

Λ’ be the set of accumulation points of Λ and 𝜕Λ denote the boundary. By minimality 

of Λ, one of the three cases hold: 

1. Λ′ is empty, and Λ is a finite orbit. 

2. 𝜕Λ is empty, and hence Λ = 𝑆1. All orbits under Γ are dense. 

3. Λ′ = 𝜕Λ = Λ, and Λ is homeomorphic to a Cantor set. 

The first two cases are not difficult to verify: Λ is closed in 𝑆1 hence sequentially 

compact, then if Λ is infinite, it must contain a limit point. And if 𝜕Λ = ∅, Λ is clopen 

hence has to be 𝑆1. 

For the last case, we can show that Λ is contained in the set of accumulation point 

of every orbit. Let 𝑥 ∈ 𝑆1, 𝑦 ∈ Λ be arbitrarily chosen; if 𝑥 ∈ Λ, then since Λ is 

minimally invariant, there must exist a sequence (𝑔𝑛) ⊂ Γ such that 𝑔𝑛(𝑥) → 𝑦. If 
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𝑥 ∈ 𝑆1\Λ, then Λ is closed implies its complement is open so we can select an open 

interval (𝑎, 𝑏) ∋ 𝑥 such that 𝑎, 𝑏 ∈ Λ. The orbit of 𝑎 under Γ is dense in Λ, and Λ 

does not contain isolated points, so there must exist (𝑔𝑛)𝑛 such that 𝑔𝑛(𝑎) 

converges to 𝑦 and 𝑔𝑛((𝑎, 𝑏)) are pairwise disjoint so that 𝑓 has no periodic points.  

Since |𝑔𝑛(𝐼)| → 0, 𝑔𝑛(𝑥) → 𝑦, so for any 𝑦 ∈ Λ and 𝑥 ∈ 𝑆1, 𝑦 belongs to the set of 

accumulation points of 𝑥Γ, so Λ′ = 𝜕Λ = Λ indeed. ∎  

 

Remark If Γ has a finite orbit, then every orbit has exactly the same cardinality. 

Also conveniently, if we can prove that the minimal set Λ has an interior point, 

necessarily Λ = 𝑆1. 

 

Theorem 4 gives a simple categorisation of minimal sets of circle homeomorphism 

subgroups. Now we will see how certain subgroups of 𝐻𝑜𝑚𝑒𝑜(𝑆1)  can be paired 

with subgroups of 𝑃𝑆𝐿(2,ℝ), especially, Fuchsian subgroups.  The motivation comes 

from the fact that 𝑃𝑆𝐿(2,ℝ)  whose elements are isometries on ℍ2  which can be 

conjugated to the isometry group 𝑐𝑜𝑛(1)  on hyperbolic disk 𝔻2  via Cayley 

transformation 𝜙 , and non-elementary Fuchsian subgroups of 𝑐𝑜𝑛(1)  (hence 

Fuchsian in 𝑃𝑆𝐿(2,ℝ)) have their limit sets either dense in the boundary of 𝔻2, i.e. 

𝑆1 = 𝜙(ℝ ∪ {∞}) , or topologically equivalent to a Cantor set. There are various 

methods to analyse a Fuchsian group 𝐺 ≤ 𝑃𝑆𝐿(2, ℝ) and its limit set (which can be 

proven to be its minimal set, see Prop. 2.9 below), e.g. finding the Dirichlet 

region/fundamental domains, apply Poincare ’s theorem on its fundamental 

domains to obtain group representations, etc; by verifying topological conjugacy 

between a Fuchsian subgroup and a circle homeomorphism subgroup Γ, we will be 

allowed to inherit this rich toolbox from hyperbolic geometry for the analysis of Γ. 

Let us begin with the following definitions. 

 

Definition 2.3 The group 𝑃𝑆𝐿(2,ℝ) refers to the set of Mo bius transformations with 

a determinant condition, i.e.   

𝑃𝑆𝐿(2,ℝ) = {𝑔(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ 𝑎𝑛𝑑 |𝑎𝑑 − 𝑏𝑐| = 1}, 
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acting on the hyperbolic complex half-plane ℍ2. It can be conjugated to an isometry 

group on Poincare ’s disc model 𝔻2  which is bounded by 𝑆1 , via Cayley 

transformation 𝜙(𝑧) =
𝑧−𝑖

𝑧+𝑖
. The hyperbolic metric on 𝔻2 is derived from 

2|𝑑𝑧|

1−|𝑧|2
, 𝑧 ∈

𝔻2. Note also that each element in 𝑃𝑆𝐿(2,ℝ) induces a real-analytic diffeomorphism 

via 𝜙 on 𝑆1, which identifies with the boundary of 𝔻2. 

Moreover, we call a subgroup Γ ≤ 𝑃𝑆𝐿(2,ℝ) Fuchsian if it is discrete with respect to 

the norm inherited from ℝ4 . The orientation preserving isometry group on 𝔻2  is 

given by: 

𝑐𝑜𝑛+(1) = {𝑔:𝔻2 → 𝔻2: for some  𝑎, 𝑏 ∈ ℂ  with  |𝑎|2 − |𝑐|2 = 1, 𝑔(𝑧) =
𝑎𝑧+𝑐̅

𝑐𝑧+�̅�
 } , and 

𝑃𝑆𝐿(2, 𝑅)  =  𝜙−1
 
𝑐𝑜𝑛+(1)𝜙 , so any Fuchsian subgroup acts on 𝑃𝑆𝐿(2,ℝ)  is a 

Fuchsian group acting on 𝔻2 , therefore most statements made about Fuchsian 

groups apply to both models of hyperbolic domains. Also, all Fuchsian groups are 

necessarily countable.  

 

The following notion initially introduced by Gehring and Martin is the important 

ingredient in order to conclude the topological conjugacy desired.  

 

Definition 2.4 Let Γ  be a group of circle homeomorphisms, we say that Γ  is a 

convergence group or has the convergence property if, for each infinite sequence  of 

distinct elements in Γ, we can find a subsequence {𝑔𝑖}: 

Figure 4 Cantor limit set of a Fuchsian subgroup, cited from [21] 
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There are points 𝑥, 𝑦 such that 𝑔𝑖 → 𝑥 and 𝑔𝑖
−1 → 𝑦 uniformly on 𝑆1\{𝑦} and 𝑆1\{𝑥} 

respectively.  
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Remark  

1.The property is indeed quite strong, in the sense that only a small number of 

subgroups satisfy this condition. Also, it can be easily checked that this property is 

invariant under topological conjugacy. 

2.There are multiple definitions of convergence groups on different domains, some 

of which require only pointwise convergence on compact sets (see [16]).  

3. Every subgroup of 𝑃𝑆𝐿(2,ℝ) satisfies the convergence property.  

 

The following proposition gives an insight of how this convergence property 

regulates the behaviour of elements. 

Prop. 2.5 Let 𝑔 ≠ 𝑖𝑑 generate a convergence group on 𝑆1, then 𝑔 has at most 2 fixed 

points. 

Proof (by Tukia). Suppose 𝑔 fixes more than 2 points, then let 𝑈 = {𝑥 ∈ 𝑆1| 𝑔(𝑥) ≠

𝑥} . Clearly, 𝑈  is a union of at least 3 disjoint open intervals, whose endpoints are 

fixed points of 𝑔, and each interval 𝐼 ⊂ 𝑈 is fixed setwise by 𝑔. Then for each open 

interval 𝐼 of 𝑈, 𝑔|𝐼 is topologically conjugate to the map  

𝑥 ↦ 𝑥 + 1 on ℝ (it is also a parabolic element in 𝑃𝑆𝐿(2,ℝ)). The order of 𝑔 is then 

infinite since topological conjugacy preserves order, if 𝑈 ≠ ∅. This contradicts the 

assumption of convergence property, hence 𝑔 can fix no more than two points in the 

unit circle. ∎ 

 

Moreover, we are now able to borrow terminologies used to describe elements in 

𝑃𝑆𝐿(2,ℝ) for circle homeomorphisms, and this is justified by the following 

corollary of Prop. 2.5, which is originally presented as a theorem in [11] 2A. 

 

Def. 2.6 The trace of an element 𝑔 in 𝑃𝑆𝐿(2,ℝ), or any Mo bius transformation, say 

𝑔 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
, is the sum of 𝑎 𝑎𝑛𝑑 𝑑. An element is so-called hyperbolic if 𝑡𝑟(𝑔) > 4, 

parabolic if 𝑡𝑟(𝑔) = 4 and elliptic if 𝑡𝑟(𝑔) < 4.  
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Remark An equivalent way to characterise elements is by the number of fixed 

points. The number of (distinct) fixed points in 𝑅 ∪ {∞} for a hyperbolic element is 

two, and one for a parabolic map. An elliptic element will have fixed points inside 

ℍ2. 

 

Cor. 2.7 If 𝑔 generates a convergence group, then 𝑔 can be conjugated by a 

homeomorphism to a Mo bius transformation.  

Proof.  

Suppose 𝑔 has 2 fixed points, say 𝑥 𝑎𝑛𝑑 𝑦, and suppose 𝑔 is orientation-preserving, 

then 𝑔  preserves the two components in 𝑆1\{𝑥, 𝑦} , and for each open interval 𝐼 ⊂

{𝑆1\{𝑥, 𝑦}} , 𝑔|𝐼  is conjugate to the map 𝑥 ↦ 𝑥 + 1  on ℝ . Furthermore, by uniform 

convergence from convergence property, actions of 𝑔 on 𝑆1\{𝑥, 𝑦} is conjugate to the 

map 𝑥 ↦ 2𝑥 on ℝ̅ = ℝ ∪ {∞} so that it has fixed points {0,∞} (in fact it can be 𝑥 ↦

𝛼𝑥  for 𝛼 > 1 ) Thus 𝑔  is conjugate to a hyperbolic Mo bius transformation. If 𝑔  is 

orientation-reversing, then it necessarily fixes 2 points, and it can be proven to be 

conjugate to either a Mo bius reflection or a glide-reflection.  

If 𝑔 fixes one point, then it is conjugate to the parabolic map 𝑥 ↦ 𝑥 + 1 on ℝ̅.  

Now suppose 𝑔 has no fixed points. Let 𝐴(𝑥) = {𝑔𝑘(𝑥)| 𝑘 ∈ ℤ} = 𝑂𝑔(𝑥) ∪ 𝑂𝑔−1(𝑥). 

If there’s 𝑥 ∈ 𝑆1 such that 𝐴(𝑥) is finite, then 𝑔 permutes the components of 

𝑆1\𝐴(𝑥), < 𝑔 > is a group of cover transformations of 𝑆1 and hence 𝑔 is conjugate 

to an elliptic element. By Fact 1.7 every such set is (asymptotic to) a periodic orbit. 

Otherwise, suppose 𝐴(𝑥) is infinite for all points, then < 𝑔 > is necessarily infinite 

and the convergence property states that there is a sequence 𝑔𝑖 = 𝑔
𝑛𝑖  and 𝑥, 𝑦 ∈

𝑆1 such that 𝑔𝑖|𝑆1\{𝑥} → 𝑦 locally uniformly. However, for all 𝑘 ∈ ℤ, 𝑔𝑖(𝑔
𝑘(𝑧)) →

𝑔𝑘(𝑦) by continuity for every 𝑧 ∈ 𝑆\{𝑔−𝑘(𝑥)} as 𝑖 → ∞. But as 𝐴(𝑦) is infinite by 

assumption,  𝑔𝑖|𝑆1\{𝑥}𝑦 cannot be true, and the proof is complete. ∎ 

 

And now, we can finally conclude the following.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟓. A group of circle homeomorphisms is topologically conjugate to a 

subgroup of 𝑃𝑆𝐿(2,ℝ) if and only if it satisfies the convergence property.  
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The proof of this statement will be out of the scope of this paper hence omitted, as 

it is lengthy and complicated in terms of preliminary knowledge in group theory 

and manifold theory. This wonderful result comes from that every subgroup of 

𝑃𝑆𝐿(2,ℝ) satisfies the convergence property, and the action on the boundary of the 

hyperbolic plane under each element in 𝑃𝑆𝐿(2,ℝ) can be identified with a 

homeomorphism on 𝑆1, therefore a convergent subgroup of circle maps should be 

intuitively ‘equivalent’ to a subgroup of 𝑃𝑆𝐿(2,ℝ). 

 

Previous items justify categorising an orientation-preserving element of a discrete 

convergence group of circle homeomorphism as hyperbolic, parabolic and elliptic. 

In the case of an orientation-reversing homeomorphism, it can be seen as a 

reflection or a glide-reflection, where the latter means it is conjugate to a 

composition of a hyperbolic element with a reflection such that the hyperbolic 

fixed points are also fixed by the reflection.  

 

The remaining part of this section mainly considers discrete convergence groups in 

𝐻𝑜𝑚𝑒𝑜(𝑆1), as they are very likely to be topologically conjugate to a Fuchsian 

group. The name ‘discrete’ reflects that a convergence group G is a discrete subset 

of 𝐻𝑜𝑚𝑒𝑜(𝑆1) in the compact-open topology (assuming that Euclidean metric is 

taken on 𝑆1), if and only if every sequence satisfies convergence property. The next 

definition relates to the limit sets.   

 

Def. 2.8 Say group Γ acts discontinuously at a point 𝑥 ∈ 𝑆1 if exists a neighborhood 

𝑈 ∋ 𝑥 such that 𝑔(𝑈) ∩ 𝑈 ≠ ∅ for finitely many 𝑔 ∈ Γ.  

Let Ω(G) = {𝑥 ∈ 𝑆1| 𝐺 acts discontinuously on 𝑥}. It is an open subset and we say 

𝐺 acts properly discontinuously on Ω(𝐺) if for any compact 𝐾 ⊂ Ω(𝐺), 𝑔(𝐾) ∩ 𝐾 ≠

∅ for finitely many 𝑔.  

 

Remark  
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1. The idea of Ω(Γ) resembles that of wandering intervals, and we can almost 

immediately derive that:  

𝐿(Γ) = {𝑧 ∈ 𝑆1 ∶  there is a sequence (𝑔𝑖) 𝑖𝑛 Γ  such that 𝑔𝑖(𝑥) → 𝑧 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥}   the 

limit set of 𝐺 , is given by 𝐿(𝐺) = 𝑆1\Ω(𝐺) . Secondly, both 𝐿(𝐺)  and Ω(𝐺)  are 

invariant under the action of 𝐺, and 𝐿(𝐺) is the minimal set of Γ. 

2. In hyperbolic geometry, a subgroup of 𝑃𝑆𝐿(2,ℝ) is Fuchsian if and only if it acts 

properly discontinuously on ℍ2. (see [18] section 2.2) 

3. The limit set of a Fuchsian group 𝐺 is given by the set of accumulation points in 

the orbit of any 𝑧 ∈ ℍ2 (or 𝔻 2) under 𝐺.  

Given a convergence group Γ ≤ 𝐻𝑜𝑚𝑒𝑜(𝑆1) , we know from Theorem 4 that its 

minimal set has two different cases. Also, we can prove that a non-elementary 

Fuchsian group acts minimally invariant on its limit set, therefore we can equate 

limit sets with minimal sets from now on.  

 

Prop. 2.9 The limit set of a non-elementary Fuchsian group acting on 𝔻2 is the 

smallest closed, invariant subset on 𝑆1. 

Proof. Suppose 𝐺 is a non-elementary Fuchsian group. Let 𝐸 ⊂ 𝑆1 be a closed 

invariant set containing at least 2 points. Choose 𝑢, 𝑣 ∈ 𝐸 and let 𝐶 be the geodesic 

line segment in 𝔻2 joining 𝑢, 𝑣, and choose 𝑤 ∈ 𝐶. Let 𝑧 ∈ 𝐿(𝐺), and suppose the 

sequence (𝑔𝑛)𝑛 sends 𝑤 to 𝑧 with respect to Euclidean metric.  Using compactness 

of 𝑆1, we can find subsequences such that 𝑔𝑛𝑘(𝑢) → 𝑢′and 𝑔𝑛𝑙(𝑣) → 𝑣′. If 𝑢′, 𝑣′ 

both distinct from 𝑧, then 𝑔𝑛(𝑤) ↛ 𝑧. Hence without loss of generality, assume 𝑢′ =

𝑧. By invariant property, 𝑧 = lim
𝑛𝑘→∞

𝑔𝑛𝑘(𝑢) ∈ 𝐸, and by closedness 𝑧 ∈ 𝐸.  

Since 𝐺 is non-elementary, 𝐿(𝐺) is infinite so any closed invariant set in 𝑆1 with 

cardinality greater than 2 contains 𝐿(𝐺). Since 𝐺 is non-elementary hence not 

generated by a single element, any invariant set cannot contain only 1 point. This 

completes the proof.∎ 

 

Def. 2.10 Call 𝐺 elementary if 𝐿(𝐺) at most two points, of the first kind if 𝐿(𝐺) = 𝑆1 

and of the second kind if 𝐿(𝐺) ≠ 𝑆1.  
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These terminologies are inherited from those of Fuchsian groups.  

Now the last step is to confirm the topological conjugacy for discrete convergence 

subgroups so that we can apply hyperbolic geometry tools designed for analysing 

Fuchsian groups, to 𝐺 ≤ Homeo(S1) . The following two theorems list all possible 

situations, differentiated by the structure of minimal sets of 𝐺. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟔 If 𝐺 is an elementary convergence group, then it is topologically 

conjugate to an elementary Fuchsian group. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟕 Let 𝐺 be a discrete convergence group of 𝑆1, then: 

i. If 𝐺 is non-elementary, either 𝐿(𝐺) = 𝑆1 or 𝐿(𝐺) is a perfect, closed 

nowhere dense subset of 𝑆1. In particular, 𝐺 is conjugate to a Fuchsian 

group. 

ii. 𝐺 acts properly discontinuously on Ω(𝐺). 

iii. If 𝑥1, 𝑥2 ∈ L(𝐺), are distinct elements and 𝑈𝑖  is a neighborhood of 𝑥𝑖 , then 

exists hyperbolic 𝑔 ∈ 𝐺 with one of  𝑃𝑔, 𝑁𝑔 in 𝑈1, 𝑈2 separately. 

iv. If 𝑥 ∈ Ω(𝐺) and 𝐻𝑥 = {𝑔: 𝑔 𝑖𝑠 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑎𝑛𝑑 𝑔(𝑥) = 𝑥}, then 

either 𝐻𝑥 = {𝑖𝑑} or 𝐻𝑥 is infinitely cyclic. 
 

Interestingly, the proof of Theorem 6 is unexpectedly complicated even it seems 

that 𝐿(𝐺) has only 3 possibilities, which are 2 points, 1 point and an empty set; proof 

of Theorem 7 case (i) follows almost immediately from Theorem 4 and 5 with 

slight differences. Proof of the other three statements requires proposition 4.8 and 

6.17 from [17]. Complete proofs will again be found in [11]. 

These theorems allow us to view discrete convergence subgroups of 𝐻𝑜𝑚𝑒𝑜(𝑆1) in 

the same way of studying Fuchsian groups, including their minimal sets and group 

presentation. Although these preceding theorems are not quite enough for asserting 

topological conjugacy between Γ ≤ 𝐻𝑜𝑚𝑒𝑜(𝑆1) and a Fuchsian group in 𝑃𝑆𝐿(2,ℝ) 

–precise conditions are stated in [11] 6B – it is in fact only in very rare occasions 

(when there is a so-called semi-triangle subgroup of orientation-preserving 

homeomorphisms) the conjugacy is not homeomorphic.  
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The value of relating a convergence group of circle homeomorphisms to a Fuchsian 

group is that we have possibly a wider range of methods to characterise group 

elements in G ≤ 𝐻𝑜𝑚𝑒𝑜(𝑆1) in terms of their (Mo bius) conjugates, and the minimal 

set of Γ can be predicted to have the same structure of its conjugate Fuchsian group. 

For example, in the following case that a convergence group Γ  is topologically 

conjugate to a Fuchsian group with bounded ‘fundamental domain’, the minimal set 

of Γ is known immediately. 

 

Def. 2.11 Let 𝐺 ≤ 𝑃𝑆𝐿(2,ℝ) be Fuchsian, an open set 𝐹 ⊂ 𝐻2 is called a 

fundamental domain of 𝐺 if ⋃ 𝑔(𝐹)̅̅ ̅̅ ̅̅ ̅
𝑔∈𝐺  and all 𝑔, ℎ ∈ 𝐺 distinct, 𝑔(𝐹) ∩ ℎ(𝐹) = ∅. 

Fundamental domains are not unique, and always exist. There are multiple ways to 

find it, frequently done by finding the ‘Dirichlet’ region. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟖 A Fuchsian group with a bounded fundamental domain is of the first 

kind. 

Proof. See [18] section 3.4. 

 

Moreover, as long as the topological conjugacy is valid, we can borrow tools from 

hyperbolic geometry to obtain better description of the ‘complexity’ of minimal 

sets, for example exponent of convergence, which is, for a Fuchsian group 𝐺 acting 

on the inside region of 𝑆1 with hyperbolic metric, defined as  

𝛿(𝐺) = 𝑖𝑛𝑓{𝑠 > 0: ∑ (
1−|𝑧|

1+|𝑧|
)}𝑧∈𝐺(0) , 

and in cases that 𝐺 is finitely generated, 𝛿(𝐺) equals the Hausdorff dimension of 

the limit set. 

 

 

Remark  

There are equivalent ways to determine whether a group of circle homeomorphisms 

is a convergence group. Tukia, inspired by the action of Fuchsian sets on hyperbolic 

domains, gives the following solution. 
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Def. 2.13 Let 𝑇 be the set of all triplets (𝑢, 𝑣, 𝑤) in 𝑆1, where 𝑢, 𝑣, 𝑤 are distinct 

elements and in positive order. Then any homeomorphism 𝑔 of 𝑆1 defines a 

homeomorphism on 𝑇, where 𝑔(𝑢, 𝑣, 𝑤) = (𝑔(𝑢), 𝑔(𝑣), 𝑔(𝑤)) if it is orientation-

preserving, or 𝑔(𝑢, 𝑣, 𝑤) = (𝑔(𝑣), 𝑔(𝑢), 𝑔(𝑤)) if orientation-reversing. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟗  Let Γ  be a group of circle homeomorphisms, then Γ  is a convergence 

group if an only if it acts properly discontinuously (in the same sense as Def. 2.8) on 

𝑇. 

Proof. See [11] 4A or [16]§1.3.3. 
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Section III 

Cantor minimal sets of diffeomorphisms 

Now we will come back to minimal sets of a single circle homeomorphism. Every 𝑓 ∈

𝐻𝑜𝑚𝑒𝑜+(𝑆1)  without periodic points by Prop. 2.2 (or Theorem 4, since we can 

treat its dynamics as group actions of < 𝑓 >  on 𝑆1), has a unique minimal set. It is 

also a known fact that the group of circle homeomorphisms acts transitively on the 

set of Cantor subsets of 𝑆1, which means for every 𝐾 ⊂ 𝑆1topologically Cantor set, 

there is 𝑓 ∈ 𝐻𝑜𝑚𝑒𝑜+(𝑆1) such that 𝐾 is the minimal set of 𝑓; and for any irrational 

number 𝜆, there is a 𝒞1 diffeomorphism with rotation number 𝜆 but with a minimal 

Cantor set (see theorem 2.3 in [2]) but is not true that any Cantor subset 𝐾  is 

minimal set for a 𝒞1 diffeomorphism, therefore M. Herman proposed the question 

that for which Cantor subsets 𝐾  there exists a 𝒞1  diffeomorphism of 𝑆1  having 

minimal set 𝐾 , and we call such K 𝒞1  minimal. The question can be partially 

answered in different directions: if 𝐾 is 𝒞1 minimal, it is ‘locally’ 𝒞1 minimal; if 𝐾 is 

𝒞1 minimal, the lengths of connected components in its complement need to satisfy 

certain limiting conditions; and if 𝐾 satisfies the 𝑝-separation condition introduced 

by Portela, 𝐾 is not 𝒞1 minimal. A non-trivial consequence we will introduce here by 

D.McDuff in  [8] §1.4 asserts that the usual ternary Cantor set is not 𝒞1-minimal.  

3.1 McDuff’s Condition 

First, McDuff in [8] §3 has given a simple case of what makes a set 𝒞1 minimal. The 

idea is that we can construct for the (non-empty) intersection of a Cantor 𝒞1minimal 

set 𝐾 with an open arc, which is itself still Cantor, a 𝒞1 diffeomorphism with it being 

the unique minimal set, by ‘collapsing’ the semi-conjugacy to a smaller circle that is 

identified with the open arc. 
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Prop. 3.1 If 𝐾 is minimal for the 𝒞1-diffeomorphism 𝑓, and let 𝐽 be a non-empty arc 

of the form (𝑥, 𝑓𝑘𝑥), for 𝑥 ∈ 𝐾𝑐. Then 𝐽 ∩ 𝐾 is also 𝒞1 minimal. 

Proof. K is the minimal Cantor set of 𝑓  implies that 𝑓  is semi-conjugate to an 

irrational rotation by Prop. 2.2 and theorem 1, so there is a continuous, monotone, 

surjective map ℎ: 𝑆1 → 𝑆1  such that ℎ ∘ 𝑓 = 𝑅𝛼 ∘ ℎ , where 𝛼 = 𝜌(𝑓) . Since 𝐾  is 

minimally invariant under 𝑓 , ℎ(𝐾) = 𝑆1 ; moreover, one can actually prove that ℎ 

maps each connected component in 𝐾𝑐  to a single point, and ℎ(𝐾𝑐)  is countable. 

Also, ℎ is continuous, and each open interval 𝐼 ⊂ 𝐾𝑐 , has its endpoints in 𝐾, we have 

that ℎ  is one-one restricted to {𝐾\{𝑥}: 𝑥 ∈ 𝐼,̅ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐼 ⊂ 𝐾𝑐} . (McDuff refers to 

this set as ‘interior points’ of 𝐾. [8] §2) 

Then, given that this semi-conjugacy is invariant under any rotation on the left, we 

can choose ℎ(𝑥) = 0 , so that  ℎ(𝑓𝑘𝑥) = 𝑘𝛼 (𝑚𝑜𝑑 1), |ℎ(𝐽)| = 𝑘𝛼 (𝑚𝑜𝑑 1). Let 𝑇 be 

the circle with length 𝛽 = 𝑘𝛼 (𝑚𝑜𝑑 1) obtained from 𝑆1 by identifying all points in 

𝑆1\ℎ(𝐽) as a single point, and 𝜋: 𝑆1 → 𝑇 be the projection. The map ℎ̃: 𝑆1 → 𝑇, given 

by  ℎ̃ = 𝜋 ∘ ℎ is surjective as it is composition of two surjective functions, and one-

one on the ‘interior’ of 𝐽 ∩ 𝐾.  

Choose 𝑚  so that 𝛾 = 𝑚𝛼 (𝑚𝑜𝑑 1) , 
𝛾

𝛽
< 1  is irrational. Let 𝜏: 𝑇 → 𝑇  be the rotation 

by 𝛾, it should have no periodic point and the countable set 𝐷 = ℎ̃(𝐾𝑐) is invariant 

under 𝜏 : 𝑇  is identified with the positively oriented arc [0, 𝛽) ⊂ 𝑆1 , then 𝜏  is 

translation by 𝛾  on [0, 𝛽 − 𝛾)  and translation by −(𝛽 − 𝛾)  on [𝛽 − 𝛾, 𝛽) . 𝜏  can be 

lifted to a 𝒞1  diffeomorphism 𝑔  of 𝑆1  by ℎ̃ . As we show now: if 𝐼 = (𝑎, 𝑏) ∋ 𝑥  is a 

component of 𝐾𝑐 , then we can construct such diffeomorphism 𝑔  in the following 

way: 𝑔|[𝑏,𝑓𝑘−𝑚(𝑎)] = 𝑓
𝑚, 𝑔|[𝑓𝑘−𝑚(𝑏),𝑓𝑘(𝑎)] = 𝑓

𝑚−𝑘 so that they will be well-defined for 

𝑇 , and extent them on the rest of 𝑆1  by any 𝒞1  diffeomorphisms from 𝑓𝑘−𝑚(𝐼)̅  to 

[𝑓𝑘(𝑎), 𝑏]  and [𝑓𝑘(𝑎), 𝑏]  to 𝑓𝑚(𝐼)̅  which that coincides with previous components 

of 𝑔 near the end of these intervals. This diffeomorphism is semi-conjugate to 𝜏 by 

ℎ̃, an irrational rotation on the smaller circle 𝑇 obtaining from collapsing the points 

in 𝑆1\ℎ(𝐽); as 𝑚 is chosen so that 𝜏 has minimal set 𝑇, and ℎ̃ maps the interior points 
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of 𝐽 ∩ 𝐾  injectively onto 𝑇\ℎ̃(𝐾𝑐) , which is dense in T (also the set ℎ̃(𝐾𝑐)  is a 

countable union of singletons), then the minimal set of 𝑔 is 𝐽 ∩ 𝐾. ∎ 

Remark Rotation number of 𝑔 is 𝛾/𝛽. 

This diffeomorphism is actually not unique, because we can choose different 𝑚 

satisfying conditions stated in the proof of 3.1. Also, since 𝐾 = 𝜔(𝑓), every 𝑥 ∈ 𝐾 is 

contained in some open arc 𝐴 = (𝑓𝑙(𝑦), 𝑓𝑚(𝑦)) for some 𝑦 ∈ 𝐾𝑐, and this open set 

can be made arbitrarily small, and by Prop. 3.1, 𝐴 ∩ 𝐾 is 𝒞1-minimal. McDuff refers 

to this property as ‘locally minimal’.  

 

It is equally hard to answer to ‘what is not 𝒞1minimal’. From sections 1.3 and 2.1, the 

existence of a minimal Cantor set is due to the existence of a wandering interval, and 

the length of its images under 𝑓， 𝑓−1 tend to 0. This is in fact a vague statement, for 

example in the construction of the famous ternary Cantor set 𝐾 on [0,1], the length 

of open intervals being inductively removed obviously tends to 0, but if {𝜆𝑖}  are 

numbers in decreasing order such that they equal to the length of the open intervals 

in the complement of K, 𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜆𝑛/𝜆𝑛+1 = 3, and one can verify that if a subset of 

𝑆1  identifies with this ternary Cantor set, it cannot be 𝐶1  minimal. Very often, a 

Cantor set failing to be 𝒞1  minimal results from the fact that the derivative of a 

diffeomorphism changes little on a small set. We will revisit this statement soon. 

Suppose 𝐾 is a Cantor subset of 𝑆1, let 𝜆1 ≥ 𝜆2 ≥ ⋯ > 0 be the lengths of connected 

components in 𝐾𝑐 ; we may also call the set {𝜆𝑖}𝑖∈ℕ  the spectrum of 𝐾 . Let 𝐽𝑗 =

[𝛼𝑗 , 𝛽𝑗], 𝑗 ≥ 1 be disjoint closed subintervals of [0,1], arranged in decreasing order 

so 𝜆𝑗 , 𝜆𝑗+1 either belong to the same 𝐽𝑖 , or 𝜆𝑗 ∈ 𝐽𝑖, 𝜆𝑗+1 ∈ 𝐽𝑖+1. In other words, {𝜆𝑗}𝑗≥1 

is covered by {𝐽𝑖}𝑖≥1  ( 𝛼𝑗 = 𝛽𝑗   is allowed, and the cover is simply a union of 

singletons), and the following holds: 

 

Lemma 3.2 If 𝐾 is 𝒞1 minimal, then the ‘gap ratios’, 
𝛼𝑗

𝛽𝑗+1
, are bounded. 
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Proof. It suffices to show that 
𝜆𝑗

𝜆𝑗+1
 are bounded, as 𝛼𝑖+1 ≤ 𝜆𝑗+1 ≤ 𝛽𝑖+1 < 𝛼𝑖 ≤ 𝜆𝑗  for 

𝜆𝑗 ≠ 𝜆𝑗+1, and 𝜆𝑗 ∈ 𝐽𝑖 , 𝜆𝑗+1 ∈ 𝐽𝑖+1. 

Suppose 𝐾 is minimal for some 𝒞1-diffeomorphism 𝑓, and choose 𝑐 > 0 (since 𝑓 is 

orientation preserving) such that 𝐷𝑓(𝑥) ≥ 𝑐, ∀𝑥 ∈ 𝑆1 . Then by MVT, the length of 

each interval 𝐼 (endpoint s of 𝐼 are in 𝐾) in 𝐾𝑐 under 𝑓, ℓ(𝑓𝐼) ≥ 𝑐ℓ(𝐼). Since 𝑓 has no 

periodic point (existence of a minimal Cantor set implies that its rotation number is 

irrational) and 𝐾𝑐 is invariant under 𝑓, for any connected component 𝐼 ⊂ 𝑆1, 𝑓𝑖(𝐼) ∩

𝑓𝑗(𝐼) = ∅ if 𝑖 ≠ 𝑗, hence lim
𝑘→∞

ℓ(𝑓𝑘𝐼) = 0.  

Then for any 𝑖 ≥ 1 , there is 𝑁𝑖 ∈ ℕ  such that ℓ(𝑓
𝑁𝑖𝐼) > 𝜆𝑖+1,  and for all 𝑘 > 𝑁𝑖 , 

ℓ(𝑓𝑘𝐼) ≤ 𝜆𝑖+1. Hence let 𝐼
′ = 𝑓𝑁𝑖𝐼, we have 

𝜆𝑖

𝜆𝑖+1
≤

ℓ(𝐼′)

ℓ(𝑓𝐼′)
≤ 𝑐−1, and this is true for all 

𝑖 ≥ 1. ∎ 

This lemma implies that the lower and upper bounds of two adjacent 𝒥𝑗′𝑠 are quite 

close for large 𝑗, leading to the following proposition, which is the most important 

result in this subsection, that says when 𝐾  cannot be 𝒞1  minimal; a generalised 

version by A. Portela will be proven in §3.2.  

Prop. 3.3 Let 𝜆𝑖, 𝛼𝑖 , 𝛽𝑖 be the same as above, then if for each 𝑁 > 0, there is 𝜂(𝑁) >

0 such that 

𝛼𝑗+𝑛−1

𝛽𝑗+𝑛
≥ (1 + 𝜂(𝑁))

𝛽𝑗

𝛼𝑗
 , for −𝑁 ≤ 𝑛 ≤ 𝑁 and all 𝑗 > 𝑁 (⋆), 

𝐾 is NOT 𝒞1 minimal. 

Remark In simpler language, this means every ‘adjacent gap’ ratio is greater than 

the ‘cover’ ratio  
𝛽𝑗

𝛼𝑗
. 

The intuition is that the derivative of a 𝒞1 diffeomorphism changes very little if the 

interval 𝐼  in 𝐾𝑐  is small (which gives Lemma 3.5 below), and (⋆)  enlarges the gap 

between 𝜆𝑖 and 𝜆𝑖+1, hence 𝐾 satisfying (⋆) cannot be 𝒞
1 minimal. 
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We will seek help from some more definitions and lemmas to establish the proof. 

Def. 3.4 In order to keep consistency with the original work by McDuff, we let ℓ(𝐼) 

be the length of a connected component I in 𝐾𝑐. The depth of a connected component 

𝐼 in 𝐾𝑐, 𝑑(𝐼), is the integer 𝑗 such that ℓ(𝐼) ∈ 𝐽𝑗 = [𝛼𝑗 , 𝛽𝑗]. 

Lemma 3.5 Suppose 𝐾  is 𝒞1  minimal for 𝑓 , and (⋆)  is satisfied, then 𝐾  can be 

covered by finitely many disjoint open arcs 𝐴1, 𝐴2, … , 𝐴𝑟 such that: if for some 1 ≤

𝑖 ≤ 𝑟, 𝐼, 𝐼′ ⊂ 𝐴𝑖 ∩ 𝐾
𝑐 , then 𝑑(𝐼) ≤ 𝑑(𝐼′) implies 𝑑(𝑓𝐼) ≤ 𝑑(𝑓𝐼′). 

Proof (slightly modified from the original version in [8]).  

For 𝑁 = 1, there is 𝜂 = 𝜂(1) > 0 such that 
𝛼𝑗

𝛽𝑗+1
≥ (1 + 𝜂) ⋅

𝛽𝑗

𝛼𝑗
≥ 1 + 𝜂, for all 𝑗. From 

Lemma 3.2, 𝛼𝑗/𝛽𝑗+1 can be bounded by some 𝐿 > 1, so: 

𝛽𝑗

𝛼𝑗
≤

𝛼𝑗

𝛽𝑗+1
≤ 𝐿 for all 𝑗.  

Then (1 + 𝜂)𝑀 ≤
𝛼𝑗

𝛽𝑗+1
⋅
𝛼𝑗+1

𝛽𝑗+2
…
𝛼𝑗+𝑀−1

𝛽𝑗+𝑀
=

𝛼𝑗

𝛽𝑗+𝑀
⋅
𝛼𝑗+1

𝛽𝑗+1
…
𝛼𝑗+𝑀−1

𝛽𝑗+𝑀−1
≤

𝛼𝑗

𝛽𝑗+𝑀
 for all 𝑗 > 1, where  

𝛼𝑗

𝛽𝑗+𝑀
=

𝛼𝑗

𝛽𝑗+1
⋅
𝛽𝑗+1

𝛼𝑗+1
⋅
𝛼𝑗+1

𝛽𝑗+2
⋅
𝛽𝑗+2

𝛼𝑗+2
…
𝛽𝑗+𝑀−1

𝛼𝑗+𝑀−1
⋅
𝛼𝑗+𝑀−1

𝛽𝑗+𝑀
≤ 𝐿2𝑀, 

combining the inequalities, for all 𝑗 > 1, and all 𝑀 > 0, we have  

(1 + 𝜂)𝑀 ≤ 
𝛼𝑗

𝛽𝑗+𝑀
≤ 𝐿2𝑀  (𝑖). 

Since (⋆)  says 𝜂 > 0 , and 𝑓  is 𝒞1  diffeomorphic on a compact set, it is possible to 

choose 𝑀 large enough so that  

𝛼𝑗

𝛽𝑗+𝑀
≥ (1 + 𝜂)𝑀 > sup {𝐷𝑓(𝑥), 𝐷𝑓−1(𝑥): 𝑥 ∈ 𝑆1}, for all j. 

Now suppose that 𝐼 ⊂ 𝐾𝑐  is an open interval, and ℓ(𝐼) ∈ 𝐽𝑗 = [𝛼𝑗 , 𝛽𝑗] for some 𝑗.  

By MVT,  there is 𝜉 ∈ 𝐼,  with 
ℓ(𝐼)

ℓ(𝑓𝐼)
=

1

|𝑓′(𝜉)|
= |𝑓−1(𝑓(𝜉))| < 𝛼𝑗/𝛽𝑗+𝑀, which implies 

that 1 ≤
ℓ(𝐼)

𝛼𝑗
<

ℓ(𝑓𝐼)

𝛽𝑗+𝑀
  hence  𝛽𝑗+𝑀 < ℓ(𝑓𝐼). 

Then      |𝑑(𝐼) − 𝑑(𝑓𝐼)| ≤ 𝑀    (𝑖𝑖), 
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for all connected component 𝐼 ⊂ 𝐾𝑐   with length smaller than 𝜆1 . The same 

statement can be proven similarly for 𝑓−1𝐼 and 𝑑(𝑓−1𝐼). 

Choose 𝛿 <
𝜂(𝑀)

𝐿2𝑀
 . 𝐾  is compact, therefore we can cover 𝐾  with finitely many open 

arcs {𝐴𝑖}𝑖=1
𝑟  whose lengths are small enough such that: 

(1) |𝐷𝑓(𝑥) − 𝐷𝑓(𝑦)| <
𝛿

2
 , ∀𝑥, 𝑦 ∈ 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑟 . It gives that if two components 

𝐼, 𝐼′ ⊂ 𝐾𝑐 ∩ 𝐴𝑖, |
ℓ(𝑓𝐼)

ℓ(𝐼)
−
ℓ(𝑓𝐼′)

ℓ(𝐼′)
| < 𝛿 by MVT again. 

(2) If 𝐼 ⊂ 𝐾𝑐 ∩ 𝐴𝑖  for some 1 ≤ 𝑖 ≤ 𝑠, then 𝑑(𝐼) ≥ 𝑀, which means ℓ(𝐼) ≤ 𝛽𝑀. 

Suppose by contradiction that there are 𝐼, 𝐼′ connected components in 𝐾𝑐, belong to 

some 𝐴𝑖   with 𝑑(𝐼) ≤ 𝑑(𝐼′)  but 𝑑(𝑓𝐼) > 𝑑(𝑓𝐼′) . By assumption (2), 𝑀 ≤ 𝑑(𝐼) = 𝑗 , 

and we can assume that 𝑗 + 𝑛 = 𝑑(𝑓𝐼) > 𝑑(𝑓𝐼′), for some 1 ≤ 𝑛 ≤⏟ 𝑀
𝑏𝑦 (𝑖𝑖)

.  

Then, ℓ(𝐼′) ≤ 𝛽𝑗 , ℓ(𝑓𝐼
′) ≥ 𝛼𝑗+𝑛−1 > 𝛽𝑗+𝑛, which gives  

ℓ(𝑓𝐼′)

ℓ(𝐼′)
−
ℓ(𝑓𝐼)

ℓ(𝐼)
≥
𝛼𝑗+𝑛−1

𝛽𝑗
−
𝛽𝑗+𝑛

𝛼𝑗
= (

𝛼𝑗+𝑛−1

𝛽𝑗+𝑛
−
𝛽𝑗

𝛼𝑗
)
𝛽𝑗+𝑛

𝛽𝑗
     (𝑖𝑖𝑖). 

Apply condition (⋆) to the right hand side of (𝑖𝑖𝑖), we get 

ℓ(𝑓𝐼′)

ℓ(𝐼′)
−
ℓ(𝑓𝐼)

ℓ(𝐼)
≥ 𝜂(𝑀) ⋅

𝛽𝑗

𝛼𝑗
⋅
𝛽𝑗+𝑛

𝛽𝑗
= 𝜂(𝑀) ⋅

𝛽𝑗+𝑛

𝛼𝑗
 , 

by (𝑖),
𝛽𝑗+𝑛

𝛼𝑗
≥
𝛽𝑗+𝑀

𝛼𝑗
≥

1

𝐿2𝑀
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 > 1, so LHS of (𝑖𝑖𝑖) ≥

𝜂(𝑀)

𝐿2𝑀
> 𝛿, which contradicts 

with assumption (1) above. ∎ 

 

The immediate consequence is the lemma below, which will prove prop. 3.3. 

Lemma 3.6 Suppose 𝐾  is 𝒞1  minimal for 𝑓  and satisfies (⋆)  , then there is some 𝐿 

such that for all 0 < 𝜀 ≤ 𝐿 , there exists an open subset 𝑈 ⊂ 𝑆1 , with 𝑈 ∩ 𝐾  non-

empty, and for all 𝐼 ⊂ 𝐾𝑐 ∩ 𝑈, ℓ(𝑓𝑘𝐼) < 𝐿0𝜀  ∀𝑘 ≥ 0, 𝐿0 = sup {𝛽𝑗/𝛼𝑗  }.  

Proof (an adapted version of the original proof in [8]§4.9).  
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The existence of 𝐿0 is implied by (⋆) and Lemma 3.2.  

Let {𝐴𝑖}𝑖=1
𝑟  be the set of open arcs satisfying Lemma 3.5, choose 𝐿 small enough so 

that all open intervals in 𝐾𝑐 with length smaller than 𝐿0𝐿 are strictly contained in 

some 𝐴𝑖; such is possible because all endpoints of open intervals in 𝐾
𝑐  are elements 

of 𝐾.  

Let 𝜀 > 0 be given and define the set 

 𝒥 = {𝐼 ⊂ 𝐾𝑐|𝐼 is an open interval with ℓ(𝑓𝑘𝐼) < 𝜀 ≤ 𝐿0𝜀  for all 𝑘 ≥ 0}. 

Since 𝐾  is minimal Cantor set if and only if 𝑓  has a wandering interval 𝐼′ , and by 

disjointness lim
|𝑘|→∞

ℓ(𝑓𝑘𝐼′) = 0,  there exists 𝑁  such that for all  𝑘 ≥ 𝑁, ℓ(𝑓𝑘𝐼′) < 𝜀 , 

then put 𝐼 = 𝑓𝑁𝐼′ , 𝐼 ∈ 𝒥 , hence 𝒥  is necessarily non-empty. In particular, one can 

select a wandering 𝐼𝑚𝑎𝑥 ∈ 𝒥 of maximal length with ℓ(𝐼𝑚𝑎𝑥) < 𝜀, because there are 

finitely many intervals 𝐽 ∈ 𝒥  with ℓ( 𝐽) ∈ [
𝜀

2
, 𝜀]  . Then, by assumption, there is 𝐴𝑖  

strictly containing 𝐼𝑚𝑎𝑥  , and let 𝑈  be a connected open subset of 𝐴𝑖  strictly 

containing the closure of  𝐼𝑚𝑎𝑥 , such that if an open interval 𝐼
′ 𝑜𝑓 𝐾𝑐 is contained in 

𝑈, it satisfies ℓ(𝐼′) ≤ ℓ(𝐼𝑚𝑎𝑥 ) < 𝜀, and 𝑑(𝐼
′) ≥ 𝑑(𝐼𝑚𝑎𝑥 ).  

𝑈 strictly contains the closure of 𝐼𝑚𝑎𝑥 ensures that 𝑈 ∩ 𝐾 ≠ ∅. Now use induction on 

the following statement: 

𝑈(𝑘): for all open interval 𝐼′ ⊂ 𝐾𝑐 ∩ 𝑈, 𝑑(𝑓𝑘𝐼′) ≥ 𝑑(𝑓𝑘𝐼𝑚𝑎𝑥 ). This means for some 

𝑗 ∈ ℕ,  
ℓ(𝑓𝑘𝐼′)

ℓ(𝑓𝑘𝐼𝑚𝑎𝑥 )
≤
𝛽𝑗

𝛼𝑗
≤ 𝐿0. 

𝑈(0) clearly holds, as any 𝐼′ contained in 𝑈 by assumption gives ℓ(𝐼′) ≤ ℓ(𝐼𝑚𝑎𝑥 ) <

𝜀𝐿0.  

Pick an arbitrary open interval   𝐼′ ⊂ 𝑈 ∩ 𝐾𝑐 . As 𝐼𝑚𝑎𝑥 , 𝐼
′ ⊂  𝑈 ⊂ 𝐴𝑖, ℓ(𝐼

′) ≤

ℓ(𝐼𝑚𝑎𝑥 ) ⇒ 𝑑(𝐼′) ≥ 𝑑(𝐼𝑚𝑎𝑥 ) ⇒ 𝑑(𝑓𝐼′) ≥ 𝑑(𝑓𝐼𝑚𝑎𝑥), therefore 𝑈(1)  holds and 

ℓ(𝑓𝐼′) ≤ 𝐿0ℓ(𝑓𝐼𝑚𝑎𝑥) < 𝐿0𝜀. So if 𝐼
′ ⊂ 𝑈, ℓ(𝑓𝐼′) < 𝐿0𝜀.  

Assume the statement holds up to 𝑈(𝑘 − 1) , any 𝐼′ ⊂ 𝑈   satisfies ℓ(𝑓𝑘−1𝐼′) <

𝐿0ℓ(𝐼𝑚𝑎𝑥) < 𝐿0𝜀  implies that 𝑓𝑘𝐼′  is in some 𝐴𝑗  . The same holds for 𝑓𝑘𝐼𝑚𝑎𝑥  , and 

since 𝑓  is a diffeomorphism, 𝑓𝑘(𝑈)  is connected which means all connected 
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components in 𝑈  are in the same 𝐴𝑗  , so 𝑓(𝑈) ⊂ 𝐴𝑗   for some 1 ≤ 𝑗 ≤ 𝑟 . Then by 

Lemma 3.5,𝑑(𝑓𝑘−1𝐼′) ≥ 𝑑(𝑓𝑘−1𝐼𝑚𝑎𝑥) ⇒ 𝑑(𝑓𝑘𝐼′) ≥ 𝑑(𝑓𝑘𝐼𝑚𝑎𝑥 )  for all 𝐼′  contained 

in 𝑈, hence 𝑈(𝑘) holds for all 𝑘 ≥ 0 and the proof is complete. ∎ 

Remark 𝐿0  is non-trivially bounded below by 1, as we do allow the cover of the 

spectrum of 𝐾 to be a union of singletons. 

 

Proof of Prop. 3.3.  

In order to prove that 𝐾 satisfying (⋆) is not 𝒞1, McDuff finds a handy contradiction 

to Lemma 3.6: 

Suppose 𝐾  satisfies (⋆)  and is 𝒞1  minimal for some diffeomorphism 𝑓 , let {𝐴𝑖}  be 

the same as above, then pick 𝜀 > 0 and the open set 𝑈, so that we can choose some 

component 𝐼 = (𝑥, 𝑦) in the complement of 𝐾 such that ℓ(𝐼) > 𝐿0𝜀 > ℓ(𝐼𝑚𝑎𝑥 ), so 𝐼 

is not in 𝑈.  

𝑈 ∩ 𝐾 ≠ ∅, select 𝑘 ∈ 𝑈 ∩ 𝐾, so there is an open ball 𝐵(𝑘, 𝜇) ⊂ 𝑈 for some 𝜇 > 0.  

𝐾 = 𝛼(𝑥) = 𝛼(𝑦) , so exists 𝑘 > 0  such that 𝑓−𝑘(𝑥), 𝑓−𝑘(𝑦) ∈ 𝐵(𝑘, 𝜇) , and by 

connectedness 𝑓−𝑘𝐼 ⊂ 𝐵(𝑘, 𝜇) ⊂ 𝑈. Now put 𝐼′ = 𝑓−𝑘𝐼, observe that 𝐼 = 𝑓𝑘𝐼′ > 𝐿0𝜀, 

a contradiction. ∎ 

 

3.2 Portela’s p-Separation Condition.  

In a fairly recent work by A.Portela, a generalisation Prop. 3.3 is given with.  

Def. 3.7 A Cantor subset 𝐾 of 𝑆1 satisfies 𝑝-separation condition, denoted by ⋆𝑝, if a 

covering of the spectrum of 𝐾, {𝒥𝑗} = ⋃ [𝛼𝑗 , 𝛽𝑗]𝑗  satisfies:  

Exists 𝑝 ≥ 0  that for all 𝑁 > 0, there is 𝜂(𝑁) > 0 such that 

𝛼𝑗+𝑛−1

𝛽𝑗+𝑛+𝑝
≥ (1 + 𝜂(𝑁)) ⋅

𝛽𝑗

𝛼𝑗+𝑝
, 
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for any integer |𝑛| ≤ 𝑁 and all 𝑗 > 𝑁.  

Remark In [3] the author originally used the term “sufficiently large” for condition 

on 𝑗. 

 

Theorem 10 If 𝐾  is a Cantor subset of 𝑆1  satisfies the condition (⋆𝑝) , it is not 𝒞
1 

minimal. 

We are going to review the proof provided by Portela in 52[3], with a few changes in 

notations and techniques in Lemma 3.10 to keep consistency with McDuff’s results; 

clearly, the three lemmas below needed for proving Theorem 10 are generalisations 

or modifications based on previous ones used in §3.1.  

Lemma 3.8 If 𝐾  is 𝒞1  minimal and satisfies (⋆𝑝)  for {𝒥𝑗}𝑗≥1 , then 𝛽𝑗/𝛼𝑗   is also 

bounded. 

Proof. Taking 𝑁 = 𝑛 = 1, we get  

𝛼𝑗

𝛽𝑗+𝑝+1
≥ (1 + 𝜂(1)) ⋅ 𝛽𝑗/𝛼𝑗+𝑝 for 𝑗 > 1, 

Then      
𝛽𝑗

𝛼𝑗
≤

𝛼𝑗+𝑝

𝛽𝑗+𝑝+1
⋅

1

1+𝜂(1)
 

By Lemma 3.2 above, 𝜆𝑖/𝜆𝑖+1  is bounded for all 𝑖 , therefore the ratios 
𝛼𝑗+𝑝

𝛽𝑗+𝑝+1
  are 

bounded, and so will be  𝛽𝑗/𝛼𝑗 .∎ 

 

Lemma 3.9 If 𝐾  is 𝒞1  minimal for 𝑓  and satisfies (⋆𝑝) , then |𝑑(𝐼) − 𝑑(𝑓𝐼)|  is 

bounded for every component 𝐼 ⊂ 𝐾𝑐.  

Proof. Pick an arbitrary component 𝐼 of 𝐾𝑐, suppose 𝑑(𝑓𝐼) > 𝑑(𝐼), and observe that 

for 𝑗 > 𝑁 = 1, by (⋆𝑝), when 𝑛 = 0, 

𝛼𝑗−1

𝛽𝑗+𝑝
≥ (1 + 𝜂(1)) ⋅

𝛽𝑗

𝛼𝑗+𝑝
, therefore 

𝛼𝑗−1

𝛽𝑗
≥ (1 + 𝜂(1)) ⋅

𝛽𝑗+𝑝

𝛼𝑗+𝑝
≥ (1 + 𝜂(1)), 
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and we have: 

(1 + 𝜂(1))
𝑑(𝑓𝐼)−𝑑(𝐼)

≤
𝛼𝑑(𝐼)

𝛽𝑑(𝐼)+1
⋅
𝛼𝑑(𝐼)+1

𝛽𝑑(𝐼)+2
⋅ … ⋅

𝛼𝑑(𝑓𝐼)−1

𝛽𝑑(𝑓𝐼)
≤

𝛼𝑑(𝐼)

𝛽𝑑(𝑓𝐼)
≤

ℓ(𝐼)

ℓ(𝑓𝐼)
≤

1

𝑚
, 

where 𝑚 ≔ inf
𝑥∈𝑆1

𝐷𝑓 (𝑥).  

If 𝑑(𝐼) ≥ 𝑑(𝑓𝐼) then exchange the role of 𝑑(𝐼) and 𝑑(𝑓𝐼) in the last inequality, and 

we can conclude (1 + 𝜂(1))
𝑑(𝐼)−𝑑(𝑓𝐼)

≤
ℓ(𝑓𝐼)

ℓ(𝐼)
≤ 𝑀 , where 𝑀 ≔ sup

𝑥∈𝑆1
𝑓′(𝑥) . Since 1 +

𝜂(1) > 1, |𝑑(𝐼) − 𝑑(𝑓𝐼)| must be bounded in both cases. ∎ 

 

Lemma 3.10 Suppose the Cantor set 𝐾  is 𝒞1  minimal for 𝑓  and satisfies (⋆𝑝)  for 

some 𝑝 ≥ 0, then there is a cover of 𝐾 consists of finitely many open intervals {𝑇𝑖}𝑖=1
𝑟  

such that: if 𝐼, 𝐽 are components in 𝐾𝑐 and contained in some 𝑇𝑖, then 

𝑑(𝐼) − 𝑑(𝐽) ≤ 𝑝 implies 𝑑(𝑓𝐼) − 𝑑(𝑓𝐽) ≤ 𝑝. 

Proof.  

Let 𝑁0 be the upper bound of {|𝑑(𝐼) − 𝑑(𝑓𝐼)|: 𝐼 ⊂ 𝐾
𝑐} given by Lemma 3.9.  

Similar to the proof of Lemma 3.5, we choose 𝛿 > 0 such that 
𝛿

𝑚
< 𝜂(𝑁0)/2. Then 

we can find an open cover  {𝑇𝑖}𝑖=1
𝑟  of K consists of sufficiently small open arcs, such 

that:  

1.If 𝑥, 𝑦 ∈ 𝑇𝑖, then |𝑓
′(𝑥) − 𝑓′(𝑦)| < 𝛿, which further implies that 

𝑓′(𝑥)

𝑓′(𝑦)
<
𝑓′(𝑦)+𝛿

𝑓′(𝑦)
< 1 +

𝛿

𝑚
< 1 + 𝜂(𝑁0)/2, 

2. If a component 𝐼 of 𝐾𝑐 is contained in some 𝑇𝑖, 𝑑(𝐼) ≥ 𝑁0 + 1. 

We now show this {𝑇𝑖}𝑖=1
𝑟   is the cover desired. Suppose components 𝐼, 𝐽  of 𝐾𝑐 

contained one 𝑇𝑖  satisfy 𝑑(𝐼) − 𝑑(𝐽) ≤ 𝑝 , but 𝑑(𝑓𝐼) − 𝑑(𝑓𝐽) > 𝑝,  or equivalently 

𝑑(𝑓𝐽) + 𝑝 < 𝑑(𝑓𝐼). Then 
ℓ(𝑓𝐽)

ℓ(𝑓𝐼)
≥
𝛼𝑑(𝑓𝐽)

𝛽𝑑(𝑓𝐼)
≥ 

𝛼𝑑(𝑓𝐽)

𝛽𝑑(𝑓𝐽)+𝑝+1
, let 𝑛 = |𝑑( 𝐽) − 𝑑(𝑓𝐼)| ≤ 𝑁0 (this 

inequality is guaranteed by Lemma 3.9), we can apply (⋆𝑝) condition to obtain: 
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ℓ(𝑓𝐽)

ℓ(𝑓𝐼)
≥

𝛼𝑑(𝐽)+𝑛

𝛽𝑑(𝐽)+𝑛+𝑝+1
≥ (1 + 𝜂(𝑁0)) ⋅

𝛽𝑑(𝐽)

𝛼𝑑(𝐽)+𝑝
. 

By MVT, there are 𝜉 ∈ 𝐽 and 𝜁 ∈ 𝐼 such that 

ℓ(𝑓𝐽)

ℓ(𝑓𝐼)
=
ℓ(𝐽)

ℓ(𝐼)
⋅
𝑓′(𝜉)

𝑓′(𝜁)
≤
𝛽𝑑(𝐽)

𝛼𝑑(𝐼)
𝛿 ≤

𝛽𝑑(𝐽)

𝛼𝑑(𝐽)+𝑝
𝛿 < (1 +

𝜂(𝑁0)

2
)
𝛽𝑑(𝐽)

𝛼𝑑(𝐽)+𝑝
, 

which is a contradiction to the first assumption of {𝑇𝑖}𝑖=1
𝑟 . ∎ 

 

Proof of Theorem 10. Suppose 𝐾 satisfies (⋆𝑝) for some 𝑝 ∈ ℕ. 

Since 𝑇 = ⋃ 𝑇𝑖
𝑟
𝑖=1  is an open cover of 𝐾, the complement 𝑇𝑐 is closed and compact, 

hence can be covered by finite number of components of 𝐾𝑐, {𝐿1, 𝐿2, … , 𝐿𝑠}. Let 𝐼 ⊂

𝐾𝑐, ℓ(𝑓𝑘𝐼) → 0 as |𝑘| → ∞, so we can find 𝑗0 such that for all 𝑗 > 𝑗0, we have that  

𝑑(𝑓𝑗𝐼) > 𝑝 +max{𝑑(𝐿1),… , 𝑑(𝐿𝑠)} 

As {𝐿𝑖} are disjoint components, there exists 1 ≤ 𝑖0 ≤ 𝑟 such that 𝑓
𝑗0𝐼 = (𝑎𝑗0 , 𝑏𝑗0) ⊂

𝑇𝑖0 . Choose 𝑐𝑗0 ∈ 𝐾  so that ℓ((𝑐𝑗0 , 𝑎𝑗0)) < ℓ(𝑓
𝑗0𝐼).  If 𝐽  is a component of 𝐾𝑐 

contained in (𝑐𝑗0 , 𝑎𝑗0), then   

|𝑑(𝑓𝑗0𝐼) − 𝑑(𝐽)| ≤ 𝑝, which implies |𝑑(𝑓𝑗0+1𝐼) − 𝑑(𝑓𝐽)| ≤ 𝑝. 

By choice of 𝑗0, 𝑑(𝑓𝐽) ≥ −𝑝 + 𝑑(𝑓
𝑗0+1 𝐼) > max {𝑑(𝐿1),… , 𝑑(𝐿𝑠)}, so 𝑓(𝐽) is not in 

𝑇𝑐. Similar to the proof of Lemma 3.5, we would have 𝑓(𝑓𝑗0𝐼) is completely 

contained in some 𝑇𝑖1 , and inductively 𝑓
𝑘(𝑓𝑗0𝐼) ⊂ 𝑇𝑖𝑘 , any 𝐽 ⊂ (𝑐𝑗0 , 𝑎𝑗0) satisfies 

𝑓𝑛(𝐽) ≠ 𝐿𝑖, ∀𝑖 = 1,2, … , 𝑠.  

But since the 𝛼-limit set of any 𝐿𝑖  is 𝐾, for each 𝑖 ∈ {1, . . 𝑠} necessarily we would 

find infinitely many 𝑘 > 0 such that 𝑓−𝑘𝐿𝑖 ⊂ (𝑐𝑗0 , 𝑎𝑗0), so by contradiction, 𝐾 

cannot be 𝒞1minimal. ∎ 

Remark  

1. McDuff’s condition (⋆) above is a special case, (⋆𝑝=0). 
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2. In the proof above, (𝑐𝑗0 , 𝑎𝑗0) is not necessarily a connected component in the 

complement of 𝐾. 

3. Let 𝐾 be 𝒞1 minimal and {𝜆𝑖}𝑖≥1 is fixed; then we can choose for each 𝑗 ≥ 1 with 

𝛼𝑗 = 𝛽𝑗 = 𝜆′𝑗 , where 𝜆𝑗
′ = min

𝑖≤𝑗
𝜆𝑖  , then the contrapositive of Prop. 3.3 with 𝑁 =

1 gives that if 𝐾 is 𝒞1 minimal then 𝜆𝑖/𝜆𝑖+1 has 1 as a non-trivial limit. Portela 

generalises this argument in [3] § 1.4 that if for some 𝜀 > 0, the covering 

{[𝛼𝑗, 𝛽𝑗]}𝑗  satisfies 
𝛼𝑗

𝛽𝑗+1
= 1 + 𝜀 as well as 

𝛽𝑗

𝛼𝑗
≡ 𝑘 then using Theorem 10 we get 

that 𝐾 is not 𝒞1 minimal.  

 

3.3 Two Examples 

The first example is the ternary Cantor set of the unit circle, which is not 𝒞1 minimal. 

The covering of its spectrum, {𝐽𝑗}𝑗∈ℕ
, can be chosen to be exactly the countable set 

of singletons {
2𝜋

3𝑗
}
𝑗∈ℕ 

 , so let  𝜂(𝑁) = 2  ∀𝑁 , we have for all 𝑗 , 
𝛼𝑗

𝛽𝑗+1
≥ (1 + 2)𝛽𝑗/𝛼𝑗  , 

hence it satisfies (⋆) and by Prop. 3.3 it is not 𝒞1 minimal.  

The following example is given by Portela as a demonstration of 𝑝 -separation 

condition with 𝑝 = 1 in [3]§3.  

Let 𝛾 < 3 < 𝛾3/2, and define for  𝑛 ≥ 1, 𝐴(𝑛) = {
𝛾
𝑗
2𝑛

34𝑛+2
: |𝑗| ≤ 𝑛}. 

Figure 5 Distribution of elements in 𝐴(𝑛) on [0,1]. See [3] 

for the original version. 
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The sum 𝑆(𝑛) = ∑ 𝛼𝛼∈𝐴(𝑛) = ∑
𝛾
𝑗
2𝑛

34𝑛+2
≤ 𝛾1/2∑

1

34𝑛+2
≤
𝛾1/2

32𝑛
𝑛
𝑗=−𝑛

𝑛
𝑗=−𝑛  , hence ∑𝑆(𝑛) <

∞.  

Let 𝐵 = {
1

3𝑖
: 𝑖 ≥ 1} ∪ ⋃ 𝐴(𝑛)𝑛∈ℕ , and ∑ 𝛽𝛽∈𝐵 ≤ 1/2 + ∑𝑆(𝑛) =: 𝜇 < ∞. 

Define 𝐶 = {
2𝜋𝑥

𝜇
: 𝑥 ∈ 𝐵}, and the family of open intervals {(𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑏𝑗)} is constructed 

via the following: 

Set 𝐵 is a countable union of countably infinite sets, hence countable, and there is a 

bijection 𝑚:ℕ → 𝐶.  

𝑎0 = 0, 𝑏0 = 𝑚(0) 

Now take an irrational rotation 𝑅𝜃 of angle 𝜃, and pick arbitrary 𝑥 ∈ 𝑆
1,  

𝑎𝑖 = 𝑏0 + ∑ 𝑚(𝑘)

𝑅𝜃
𝑘(𝑥)∈(𝑥,𝑅

𝜃
𝑗 (𝑥))

 , 𝑏𝑗 = 𝑚(𝑗) 

Let 𝐾 = 𝑆1\(⋃ (𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑏𝑗))𝑗 , then the spectrum of 𝐾, i.e. the lengths of open intervals 

in its complement is the set 𝐶. Portela did not explicitly prove this set is a topological 

Cantor set, thus we are doing so now. 

Prop. 3.11 𝐾 is a perfect, nowhere dense closed set. 

Proof.  

Claim: {(𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑏𝑗)}𝑗 is a disjoint family of open sets.  

Proof of claim: take 𝑗, 𝑙 ∈ ℕ, 𝑗 ≠ 𝑙, and without loss of generality, suppose 𝑒𝑖𝑎𝑗 < 𝑒𝑖𝑎𝑙  

(it means the smallest interval between these points, (𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑎𝑙) , is positively 

oriented) , then it suffices to show 𝑒𝑖𝑎𝑙 > 𝑒𝑖𝑏𝑗 .  

ℓ ((𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑎𝑙)) = ∑ 𝑚(𝑘) −

𝑅𝜃
𝑘∈(𝑥,𝑅𝜃

𝑙 )

∑ 𝑚(𝑘)

𝑅𝜃
𝑘∈(𝑥,𝑅

𝜃
𝑗
)
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Since 𝑒𝑖𝑎𝑗 < 𝑒𝑖𝑎𝑙  , (𝑥, 𝑅𝜃
𝑗
) ⊂ (𝑥, 𝑅𝜃

𝑙 ) , so ℓ ((𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑎𝑙)) = ∑ 𝑚(𝑘)
𝑅𝜃
𝑘∈[𝑅

𝜃
𝑗
,𝑅𝜃
𝑙 )

 , which is 

strictly greater than 𝑚(𝑗), therefore (𝑒𝑖𝑎𝑗 , 𝑒𝑖𝑏𝑗) ∩ (𝑒𝑖𝑎𝑙 , 𝑒𝑖𝑏𝑙) = ∅, the claim holds. 

The sum of lengths of components in 𝐾𝑐  is 2𝜋 , hence 𝐾𝑐  is dense in 𝑆1 ⇒ 𝐾  is 

nowhere dense. 

𝐾 is clearly closed. If 𝑥 ∈ 𝐾 is isolated, it is a common endpoint of some intervals in 

𝐾𝑐 , i.e. for some 𝑗, 𝑙 ∈ ℕ, 𝑒𝑖𝑏𝑗 = 𝑒𝑖𝑎𝑙 = 𝑥 ⇒ 𝑎𝑙 − 𝑎𝑗 = 𝑚(𝑗) . But then as before, 

∑ 𝑚(𝑘)
𝑅𝜃
𝑘∈[𝑅

𝜃
𝑗
,𝑅𝜃
𝑙 )

> 𝑚(𝑗) , this is impossible. Therefore 𝐾  does not contain isolated 

points, i.e. a perfect set, and nowhere dense. 

Prop. 3.12 𝐾 satisfies (⋆1) condition. 

Proof. Elements in C are of the form  

𝜔𝑖 =
2𝜋

𝜇3𝑖
,  𝜔𝑖,𝑗 =

2𝜋𝛾
𝑗
2𝑖

𝜇34𝑖+2
, 𝑖 ∈ ℕ, |𝑗| ≤ 𝑖, 

Therefore 
2𝜋𝛾−1/2

𝜇34𝑖+2
≤  𝜔𝑖,𝑗 ≤

2𝜋𝛾1/2

𝜇34𝑖+2
 since 𝑓(𝑥) = 𝛾𝑥 is monotone increasing. 

To construct {𝒥𝑖}𝑖≥1 for 𝐶, consider : 

{
 
 

 
 𝛼𝑖 =

2𝜋𝛾−1/2

𝜇3𝑖
, 𝛽𝑖 =

2𝜋𝛾1/2

𝜇3𝑖
, 𝑤ℎ𝑒𝑛 𝑖 = 4𝑘 + 2, 𝑘 > 0

 𝛼𝑖 = 𝛽𝑖 =
2𝜋

𝜇3𝑖
,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Remember that 𝛾 < 3 < 𝛾3/2, so for all integer 𝑛, we have  

𝛼𝑗+𝑛−1

𝛽𝑗+𝑛+1
≥

2𝜋

𝜇3𝑗+𝑛−1
/
2𝜋𝛾

1
2

𝜇3𝑗+𝑛+1
= 9𝛾−

1
2  > 𝛾3/2. 

And 
𝛽𝑗

𝛼𝑗+1
≤
2𝜋𝛾

1
2

𝜇3𝑗
/
2𝜋

𝜇3𝑗+1
≤ 3𝛾

1

2, so for all 𝑁 > 0, pick 𝜂(𝑁) ≡ 𝛾−
1

2 − 1 > 0, then for all 

|𝑛| ≤ 𝑁, and 𝑗 > 𝑁, 



48 

𝛼𝑗+𝑛−1

𝛽𝑗+𝑛+1
> 𝛾3/2 > 3 ≥ 𝛾−

1
2
𝛽𝑗

𝛼𝑗+1
= (1 + 𝜂(𝑁))

𝛽𝑗

𝛼𝑗+1
. 

  

Remark  

This Cantor set in fact does not satisfy McDuff’s (⋆0) condition, the proof is not too 

hard and will be omitted here.  
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Conclusion 

This last section is a review of the mathematical results introduced in previous parts 

of this paper. Some further questions will be proposed as potential topics for future 

research extension. 

In Section I, classical results from early the 20th century concerning the conjugacy of 

circle homeomorphisms are presented. We introduced the concept of ‘rotation 

number’, explained how it can be derived via combinatorics based on the dynamics 

of the circle map following steps instructed in [2]. Poincare  used this number as an 

indicator of semi-conjugacy to an irrational rotation, and Denjoy improved this to a 

topological conjugacy by requiring the map to be 𝒞1whose derivative is of bounded 

variation. The concept of a wandering interval appears in deriving Denjoy’s theorem 

and is used in later discussion of minimal sets. 

In Section II, using the concept of wandering intervals, it is proven first that if no 

finite orbit exists, the unique minimal set of a subgroup in 𝐻𝑜𝑚𝑒𝑜(𝑆1)  is either 

dense in the circle, or topologically equivalent of a Cantor set. Then, assuming 

convergence property, circle maps are characterised as hyperbolic, parabolic and 

elliptic by the number of fixed points, and two separate theorems in [11] together 

conclude that most discrete convergence groups of circle homeomorphisms are 

topologically conjugate to Fuchsian subgroups of 𝑃𝑆𝐿(2,ℝ), hence their limit sets 

are topologically equivalent, so that the toolbox for analysing minimal sets of circle 

map groups is enriched by the theory of hyperbolic geometry.  

Section III focuses on the study of minimal Cantor sets, inspired by M. Herman’s 

question “for which Cantor subset 𝐾  of 𝑆1  there exists a corresponding 𝒞1 

diffeomorphism with minimal set 𝐾”. We examined responses from D. McDuff, who 

concluded both that a 𝒞1 minimal Cantor set is necessarily locally 𝒞1 minimal, and 

if the spectrum of 𝐾  is covered by some disjoint closed intervals with particular 
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limiting conditions, 𝐾 is not 𝒞1 minimal. The latter proposition was generalised by 

A. Portela’s 𝑝 -separation condition, and one particular Cantor set was explicitly 

constructed as an example satisfying the 𝑝-separation condition and therefore not 

𝒞1 minimal.  

There remain several unresolved questions related to the study of 𝒞1  minimal 

Cantor sets that are worth further research. 

Let 𝒞(𝑟) = {𝐾:𝐾  is Cantor minimal set for some   𝒞𝑟  diffeomorphism  𝑓} . As a 

corollary of Theorem 2 by Denjoy in section I, the derivative 𝐷𝑓  of any 𝒞2 

diffeomorphism 𝑓  is of bounded variation hence topologically conjugate to an 

irrational rotation, so 𝒞(𝑟) = ∅ for any 𝑟 ≥ 2; and we know every Cantor subset of 

𝑆1 is in 𝒞(0). The results demonstrated in previous subsections give restrictions on 

elements in 𝒞(1), with requirements on the sequence {𝜆𝑖} of lengths of components 

in the complement. There are two types of questions remaining, the first one, raised 

by McDuff herself in [8] asks if 𝜆𝑛/𝜆𝑛+1 → 1  is necessary and sufficient for 𝒞1 

minimal, provided that all 𝒞1 minimal Cantor sets known or constructed indeed all 

satisfy the condition, and any Cantor subset 𝐾 with 𝜆𝑛/𝜆𝑛+1 ↛ 1 is certainly not 𝒞1 

minimal. One may ask another question seemingly less interesting but still worth 

thinking, that whether it is possible to construct for each 𝑝 ∈ ℕ  a Cantor set 

satisfying (⋆𝑝)  condition, and a corresponding 𝑓 ∈ 𝐻𝑜𝑚𝑒𝑜
+(𝑆1)  . Further, can we 

extend these results to interval maps with a few discontinuities, similar to the idea 

of 𝑆(𝒥)  in section I? For example, for which Cantor subset 𝐾  of [0,1]  there is a 

piecewise 𝒞1 diffeomorphism with 𝐾 as minimal set? 

More generally, for 𝒞(1 + 𝜀) , ∀𝜀 ∈ [0,1) ,  it is almost always easier to conjecture 

what type of Cantor set is not in 𝒞(1 + 𝜀), which usually done by writing out the 

explicit construction process of the Cantor sets; for example in [19] A.N.Kercheval 

has shown an ‘affine’ Cantor set cannot be in 𝒞(1), and A.Portela in another paper 

has shown in [20] that a special type, namely the quasi-regular interval Cantor set 

of 𝑆1, with non-zero regularity, cannot be an element in 𝒞(1 + 𝜀) for all 𝜀 > 0.  

This type of results generates more open questions such as:  
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1. Can we measure how ‘far’ is a Cantor subset of the unit circle from being a member 

of 𝒞(𝛼), for some 𝛼 ∈ (0,2)? For example, one can use the following distortion-like 

formula described in [19]  

𝒩(𝑓) = max
𝑗=1,2,..𝑘

sup
𝑥,𝑦∈𝐼𝑗

𝑙𝑜𝑔
𝑓′(𝑥)

𝑓′(𝑦)
, 

for some function 𝑓 defined on disjoint compact intervals 𝐼1, … , 𝐼𝑘, such that 𝑓[𝐼𝑗] =

𝐿 = 𝑐𝑙(⋃ 𝐼𝑗)
𝑘
𝑗=1 . Is there a universal measurement on Cantor sets to determine where 

they belong to  𝒞(1)? 

2. Is there anything we can assert for 𝒞(𝛼), for 0 < 𝛼 < 2, 𝛼 ≠ 1?  

These questions are potential topics for further investigations. 
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