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Abstract

A goal of ergodic theory is to understand the stochastic behaviours of deterministic systems. Given
a measure preserving system (X, f, i), decay of correlations ensures that for reasonable w : X — R,
(w (f™x)), ey asymptotically behaves like an i.i.d. process and results analogous to classical probabil-

istic theorems for i.i.d. sequences can be proved.

Decay rates for uniformly hyperbolic maps are often exponential whereas non-uniformly hyperbolic
systems can have troublesome rates, e.g. subexponential or polynomial. A common approach to study
decay of correlations is via the corresponding symbolic space, which admits the same rate of mixing.
Since non-uniformly hyperbolic systems are often modelled by countable Markov shifts which are non-

compact, it requires a more exhausting machinery to prove analogous statements for finite shifts.

This thesis will first review some thermodynamic results for subshifts of finite types (SFT) and count-
able Markov shifts (CMS) then focus on CMS with strong positive recurrence (SPR), a property shown
to be equivalent to the spectral gap property, which guarantees exponential mixing rates and other
desirable features. For CMS satisfying certain topological boundary conditions, we will show that SPR
is characterised by the ergodic averages over periodic orbits. Examples are provided to demonstrate

that our condition is rather weak.

In Chapters 3 and 4, we prove two sets of almost sure results using the Borel-Cantelli lemmas for fast
mixing systems. Firstly, we show that the asymptotics of the cover times are almost surely quantified

by the Minkowski dimensions, which dictate the growth of hitting times to geometrically small sets.

The second set of theorems shows that for a point in a topological Markov shift, the length of the
longest matching substrings grows exponentially depending on the Rényi entropy of the Gibbs measure.

Such quantitative results extend analogously to the shortest distance problem for interval maps.
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Notation and abbreviations

Here is a list of notation used in this thesis.

* For FE a set in some topological space, let #F denote the cardinality of F, and 1g the indicator
function of E.

* The union of natural numbers with {0} is denoted by N.

* For a dynamical system f defined on a metric space (X,d), let C(X) be the set of continuous
real-valued functions and M ; denotes the set of f-invariant probability measures.

* For two collections P, Q of subsets in (X, d),let PV Q:{PNQ:PcP, Q< Q}.

¢ When there is no confusion of the dynamics in question, the measure-theoretic entropy of a
measure v is denoted by h(v).

* The open ball centred at = with radius » > 0 is denoted by B(x, r).

* The floor and ceiling functions, |z | takes the largest integer < x and [z] takes the smallest integer
> .

* For real numbers a, b, c, we write a = b+ cifa € [b—c,b+ ¢|.

* For two real positive sequences {ay }n,{bn}n, Write ap = by if loga, — logb;, is bounded, or

ag

2k | is uniformly bounded away from 0 and +oo.

equivalently the ratio | 3

Say ay < by, if there is {cg }x such that a; < ¢ for all &, and by, ~ ¢;. Both relations are transitive,
and if b, is summable, a;, < by, then a; is summable.
* For any function g : X — R on the ambient space (X, d), let E[g] and Var[g] denote the expecta-

tion and variance of g respectively, when the relevant probability measure is clear.

The constants of the form Cj, or K; used in the proofs in a given chapter are not inherited in later

chapters, unless specified.
The following abbreviations are commonly used.

* acip: invariant probability measure absolute continuous with respect to Lebesgue measure;

11
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big image and preimage property;
contraction at infinity;

CLT: central limit theorem;

CMS: countable Markov shift;

i.i.d. : independent, identically distributed;
spectral gap property;

strong positive recurrent;

subshift of finite type;

UCSE uniform contraction structure;
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Chapter 1

Preliminaries

In order to understand the statistical behaviour of a dynamical system, we often study its invariant
measures. There are various notions of chaotic and stochastic phenomena, but a measure’s decay
of correlations, or equivalently the mixing properties (these two terms will be used interchangeably
throughout), is of central focus among plenty other measure theoretic properties. Given (X, d) a metric
space and (f,u) a measure preserving system on X, decay of correlations ensures that for a large
class of observables w : X — R, the sequence (w (f"x)),, oy in the long run asymptotically resembles
an independent, identically distributed process. If the rate of decorrelation is sufficiently fast, one
can prove various results analogous to classical probabilistic theorems for sequence of i.i.d. random
variables, e.g. the Law of Large Numbers, the Central Limit Theorem, etc. Moreover, the analysis gets
particularly interesting when the observables are chosen to reflect some geometric behaviour of the
system. For example, the observable evaluated at each {f/z},cy can decay with the distance either to
a reference point Z € X, or to the initial position. The analysis of minimal times for such observable
to reach some threshold value is referred to as the hitting time or return time problem respectively, and

so far we know their asymptotic behaviours are closely dependent on the rates of decorrelation.

A wide range of uniformly hyperbolic systems are well understood today in terms of their statistical and
stochastic properties. In particular, they very often enjoy exponential decay of correlations, whereas
the non-uniformly counterparts are more difficult to handle, e.g. subexponential or polynomial rates.
However, we can often associate a symbolic shift model to the systems in question, and analyse the
invariant measures. Generally speaking, the symbolic system with the relevant measure admits the

same rate of mixing as the original mapping although the relevant functional spaces may be different.
The study of symbolic shifts has a relatively long history compared to that of thermodynamic formalism

13



14 CHAPTER 1. PRELIMINARIES

of dynamical systems, and has been playing a crucial role in other research areas such as stochastic
processes, graph theory, logic, etc. In this thesis all shifts are assumed to be Markovian, in the sense
that the image of a partition set under the shift map is always a countable union of other partition sets;
some non-Markovian shifts, e.g. the §-shifts, also have a sophisticated and well-developed theory but

will not be discussed.

The thermodynamic formalism of finite topological Markov shifts is very well understood in terms of
Gibbs measures, equilibrium states and decay of correlations. These results are nicely summarised
and organised in [Bow]. Since non-uniformly hyperbolic systems are often modelled by countable
Markov shifts which are non-compact metric spaces, it requires a more exhausting machinery to prove
analogous statements for finite shifts. However, if one can show that the transfer operator associated
to some potential acts on a Banach space of functions with spectral gaps, then exponential rates of
decay of correlations are expected. That is to say, the job reduces to, in some sense, finding necessary
and sufficient conditions for the existence of such a spectral gap. Important results for Markov shifts
with a countable alphabet have been proved in the last thirty years due to Aaronson, Denker, Mauldin,
Sarig, Urbanski and many others. In this chapter we will do a quick review of some selected results
from their works. Since many properties (especially those we care about in this thesis) of two-sided

shifts can be reduced to one-sided shifts on Ny, we restrict our discussion to this case.

1.1 Subshifts of finite type and mixing conditions
Let us start with subshifts of finite type. Let A be a finite alphabet, and M be an A x A transition

matrix of 0,1 entries. The associated topological Markov (sub)shift space, denoted by ¥, is defined by

Y= {z = (x,21,...) € AN : M,

TjsTj+1

=1forall j € No},

where M; ; is the (4, j)—entry of the matrix M. The dynamics on ¥ is the left shift o : ¥ — ¥, given by
(0x); = w41, for all i > 0. The triplet (X, A, M) is called a subshift of finite type (SFT). Denote the set

of probability measures on ¥ by M(X) and the set of s-invariant measures by M.

A word of length n w is allowable if M, =1forj=0,...,n—2. Let ¥,, denote all allowable

3 Wi+1

words of length n, and ¥* := U7121 3, the set of all finite allowable words. Similarly, let C,, denote

the set of all non-empty n-cylinders and F,, the sigma-algebra generated by C,,.

Definition 1.1.1. The measure theoretic entropy of u of the subshift, denoted by h(u), is given by

hp) = lim — 3 u(C)log(u(C)). (1.1.1)
ceC,



1.1. SUBSHIFTS OF FINITE TYPE AND MIXING CONDITIONS 15
The shift space is equipped with a symbolic metric, d, : ¥ x ¥ — R, given by
dy(z,y) = 271*"I where 2 Ay :=inf {k > 0: zp # yi}. (1.1.2)

Note that since #.4 < oo, the metric space (%, ds) is compact.

Definition 1.1.2. An n-cylinder in ¥ is a collection of points such that they agree on the first n symbols,

denoted by square brackets, i.e.,

[wa”vxnfl] = {ye E:yO =Z05---,Yn—1 :xnfl}'

Cylinders are precisely the open balls in ¥ with respect to the metric ds. The 1-cylinders {[a] : a € A}
are called partition sets, and the symbolic systems studied in this thesis are Markov in the sense that the
image of each partition sets under ¢ is a (countable) union of partition sets. Examples of non-Markov

symbolic systems include Sturmian shifts, S-transformations, etc.

Definition 1.1.3. ¥ is topologically transitive if for all a, b € A, there exists Ny, such that o~Na* [b]N[a] #
(), and topologically mixing if for all n > Ny, o~ "[b] N [a] # 0. For each pair a,b € A, Ny can be
different.

Topological transitivity can be upgraded to topological mixing if there are coprime periodic orbits.

Proposition 1.1.4. A topologically transitive Markov shift is topologically mixing if and only if there exist

p, q coprime and periodic points x,y € X such that x = oPx, y = oy.

Proof. Suppose ¥ is topologically mixing and fix a € A. Then by definition there exists n > N, and

x,y € [a] such that o™z = z and 0" 1y = y.

Now suppose the ¥ contains x, y periodic points with periods p, ¢ coprime. Let a, b € A, by topological

transitivity, there exists N, V.

Tp—1Y0>

Ny, > 1 such that
[a] N o™ Nawo o], [wp_1] N o™ Nee=190 o], [yg_1] N o™ Nva-12[b] # 0.

The largest integer that cannot be written as a sum of positive multiples of p,qis (p —1)(¢ — 1) — 1, so

set

Nab = Nage + Noy_1yo + Ny,_ip + (p = 1)(g — 1),

then for all j > N, [a] N o=7[b] # 0. As a, b are arbitrary, this proves topological mixing. O

These definitions can be compared to more general versions in topological dynamical systems lan-

guage. For interval maps, transitivity roughly means there do not exist two non-empty subsets in the
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interval with disjoint interiors that never talk to each other under the dynamics. Topological transit-
ivity guarantees a list of chaotic properties, e.g. the set of periodic points of the mapping is dense in
the interval. Topological mixing implies that for any two open sets, after some finite time evolution
their images always intersect, while the more important question is how fast and what proportion of
the sets are saturated. Suppose p is a shift invariant measure, the following measure-theoretic notions

of mixing approximate the notion of independence.

Definition 1.1.5 (Mixing conditions). Let i be a shift invariant measure on %, it is said to be one of the

following if for all n,m,k € Nand E € F,, F € F,,,

* weakly-mixing: [ (ENo™""*F) — u(E)u(F)| — 0 as k — oo;
* a-mixing: |p (ENo " F) — w(E)u(F)| < a(k) for some a : Ng — R strictly decreasing;
* ¢-mixing: |p (ENo~""*F) — u(E)u(F)| < ¢(k)u(E) for some ¢ : Ng — R strictly decreasing;

* ¢-mixing: |u (ENo™""*F) — u(E)u(F)| < ¥ (k)u(E)u(F) for some 1 : Ng — R strictly decreas-

ing.

It is obvious that ¢-mixing — ¢-mixing —> «-mixing — weakly mixing = ergodic. See
[Bra] for more detailed discussion on mixing conditions. We will focus on systems with -mixing
in Chapter |3| and Chapter [4} as it is a powerful mixing condition: (1) it implies the following quasi-
Bernoulli property, i.e., for all w,v € ¥*, 1 being ¢-mixing implies there exists B = 1 4 ¢(0) > 1 such
that

p([we]) < Bu([w])p((v)), (1.1.3)

and (2) it guarantees that the measure of an arbitrary n-cylinder decays exponentially in n.

Lemma 1.1.6. [|GalSch] If the probability measure p is 1)-mixing with 1 (-) summable, there exist con-
stants 8 € (0,1) and Ky > 0 such that ;(C) < Ko™ for all C € C,, and all n.

Remark 1.1.7. The statement of the lemma holds when A is countably infinite as well, as the original

proof given in [(GalSchl] does not exploit the finiteness of the alphabet.

1.2 Equilibrium and Gibbs states for subshifts of finite type

Given a dynamical system, it is common that the system admits many, even infinitely many, invariant
or ergodic measures, and since statistical behaviours depend on the measure, which measure should
we choose to analyse the system? A natural answer is ‘equilibrium states’. In statistical mechanics,

equilibrium states are described by probability measures on topological spaces that are characterised
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by variational principles, maximising entropy (or the sum of entropy and an energy-like quantity).
In some sense [Kel2, §1], equilibrium states should be viewed as an object on both microscopic and
macroscopic scales: by invariance, equilibrium states allow one to predict the configuration of an item
in the topological space for all future times, however since the number of microscopic sites are too

many or simply (uncountably) infinite, we focus on the macroscopic information.

For topological shifts, an obvious question is whether the system admits equilibrium states, in such case
the sum of entropy with some thermodynamic potential is minimised or maximised. Precise definitions

are given below, starting from the pressure function.

A real-valued function ¢ : ¥ — R is called a potential. Denote the set of continuous potentials on 3 by

C(X). Two potentials ¢, ¢’ are called cohomologous if there is u € C(X) such that for all z € ¥,

¢'(z) = ¢(x) — u(x) + u(ow).

If one of ¢, ¢’ is a constant function then both of them are called coboundaries. For topologically trans-
itive topological Markov shifts, two potentials are cohomologous if and only if the Birkhoff averages of

all periodic points coincide.
Definition 1.2.1. Let S, ¢(r) := Z;:Ol ¢ (07x) denote the n-th Birkhoff sum, and define the partition
functions and the topological pressure of ¢ respectively by

Zn(¢) = > exp (sugSn(;S(x)), P(¢) := lim l1ogzn(¢). (1.2.1)
S

n—o00 N,
cec,

By [Bow} Lemma 1.20], P(¢) exists for all continuous ¢. In other words, while topological entropy
hy = P(0) counts the asymptotic growth of cylinders of length n, the topological pressure can be
seen as its generalisation, weighted by a potential ¢. The term pressure here perhaps should not be
taken literally: here P(¢) is minus the usual value of pressure in statistical mechanics known to most
physicists. It should also be stressed that, for each given ¢, P(¢) depends only depends on the Borel

structure of ¥ and has nothing to do with the metric d;.

To guarantee the value of P(¢) exists, ¢ is often assumed to behave reasonably regular, i.e., continuous

with respect to d; and its variations are not extreme.

Definition 1.2.2. Let varg(¢) := sup {|¢(z) — ¢(y)| : z; = y;, forall 0 < j < k — 1} denote the k-th
variation of ¢, then ¢ is called Holder or 6-Holder if there exists c, > 0 and 6 € (0, 1) such that var(¢) <
0" for all k € No.

Furthermore, P(¢) satisfies the Variational Principle.
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Theorem 1.2.3 (Variational Principle). [Bow] §2.17]

P(¢) = sup {h(u) + /(bdl/ (Vv E ./\/lg} , (1.2.2)

where h(v) denotes the measure-theoretic entropy defined in (1.1.1)).

In comparison to (1.2.I)), the Variational Principle does not require any time-evolution information
apart from invariance under the dynamics. Now it makes sense to ask if there are invariant measures

realising this supremum.

Definition 1.2.4. Given ¢ : ¥ — R continuous, a measure ;i € M, is called an equilibrium state if

hp) + [ du = P(9).

The statistical properties of possible equilibrium states is closely related to the properties of the Ruelle

operator associated to ¢, or often called the transfer operator, defined by

Ly:C(T)=C(%), Lof(x)= > W f(y), (1.2.3)

yEo~lz

and its iterates satisfy L7 f(x) = ) e%n9W) f(y) for all integers n > 1. For any y € M(X) and

yeo~ "z
geC), [g d(Lyp) = J(Lsg)dp. When there is no confusion about the potential in question, denote
L simply by £. The following theorem is a consequence of the compactness of the functional spaces

of ¥ and the Schauder-Tychonoff theorem, which tells us the eigenspaces of L.

Theorem 1.2.5. [Ruel] Rue2]] Let (X, o) be topologically mixing and ¢ Holder, then there exists A > 0,

h € C(X) and a Borel measure v such that
Lh = Mh, L'v = Av, v(h) =1, and li_>m H/\_"ﬂng - u(g)hHoo =0forall g € C(%).
n oo
In this case, A = eF(9),
The terms ), h and v are called the eigenvalue, eigenfunction and eigenmeasure of £ respectively.
Another fruit from this theorem is the existence of a Gibbs measure for ¢, which is defined below.

Definition 1.2.6. Given ¢ € C(X), an invariant measure i € M, is called a Gibbs measure for ¢ if there
exists G > 1 and P € R such that for alln € Nand all C € C,,, for all x € C,

1 m(C)
G = exp (Spo(z) — nP) =G (1.2.4)

A simple example of Gibbs measure is a Bernoulli measure. Let (X,0) be a fullshift on K symbols,
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Suppose p = {p }5_, is a probability vector, and for each k-cylinder [z, ..., x)_1],

k—1
Hp ([1'07 LR 7$k71]) = H Pz -
j=0

Then p;, is the Gibbs measure for ¢ : « +— log p,, with G = 1.

It should be stressed that the Gibbs definition above is given in Bowen’s sense, and its form immedi-
ately suggests its importance from the dynamical point of view: the measure of each cylinder can be

uniformly approximated by the ergodic average of an arbitrary point in the set.

In statistical mechanics, Gibbs states are of central importance in equilibrium theory, which originated
from Boltzmann’s work on ideal gases (see [Bol]). His ideas were adapted to other physical systems
such as ferromagnets, which are often modelled by an infinite lattice, e.g. Z¢. Non-rigorously speaking,
given a system S and the collection of its possible states {si,...,sn}, if U(s;) is the total energy of S
at state s;, then the Gibbs’ rule of probability distribution satisfies
e—BU(s:)

P([si]) = W7

for some constant J often referred to as inverse temperature. In comparison to topological shift, it is

useful to think of S as a lattice with sites 0,1,... and each s € {s1,...,sny} as s = (zg,1,...) which

means 0 is configurated in state zg, 1 in z1, etc.

Rigorous constructions of probability structures on infinite probability spaces of interest to us were
due to Dobrushin [Dob68]], Lanford and Ruelle [LanRue] in late sixties, and also frequently referred
to as the Gibbs measure. Their method, the DLR approach, constructs a measure from the conditional
expectations over the pre-images of the sigma-algebra generated by the cylinders, that is, we care
about the distribution of the initial n symbols in a sequence conditioned on a fixed tail (z,,, z,41,.-. ).

The precise definition will be omitted here; for non-singular probability measure v on ¥, let

voo():= Z v(o(-Nlal)),

acA

then if dfzo = A"lexp(¢) (in other words v is ¢-conformal Remark i , visaDLR measur For a
topologically transitive subshift of finite type with continuous potential ¢, Ruelle showed there exists
a DLR measure. In the early 70’s, Sinai showed that natural invariant measures for hyperbolic systems
are DLR measures. In fact, Sinai proved that for Holder potentials, equilibrium states are obtained

from DLR states [Sin]], and (1.2.4)) was established by Bowen.

Theorem 1.2.7. [Bow} §1.4,Theorem 1.22] Let u be such that du = hdv for h,v in Theorem

'In general however, DLR measures need not to be invariant under the dynamics
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Then u is a o-invariant probability measure with the Gibbs property with P = P(¢), and it is the unique
measure in M, such that h(p) + [ ¢dp = P(¢).

Another important property of a Gibbs measure is that it is a fast mixing equilibrium state.

Proposition 1.2.8. [Bow| Proposition 1.14] Let u be the Gibbs measure in Theorem then u is
exponentially 1-mixing, i.e., there exists K; > 0 and p € (0,1) such that for all n,m,k € N and all

E e C'ru Fe C’m:
p(ENno k)

_ k
WEyuE) | e

The Gibbs measure p also verifies a version of the Central Limit Theorem [Rat]], which is beyond the

scope of discussion here.

Remark 1.2.9. In this section, the existence of an eigenmeasure for subshifts of finite type is due to the
compactness of (X, 0), but for Markov shifts on countable alphabets those arguments may fail; instead,
existence and construction of a solution to L*v = Av are given by a limiting procedure that produces a

sequence of tight measures.

1.3 Sarig’s theorems for Gibbs measures for countable Markov

shifts

Suppose A is countably infinite (without loss of generality we can assume .4 = N), and everything else
remains the same, then the triplet (X, .4, o) is called a countable Markov (sub)shift (CMS) and (X, dy)
is no longer compact. As a result, Theorem may even fail for ¢ = 0 (see [Gurll]). Therefore,
in order to obtain a Gibbs equilibrium state, we need to put other restrictions on the system so that
(¥, 0,¢) behaves like a SFT. We will recall the results regarding the entropy, equilibrium states and
Gibbs states by Aaronson, Denker [AD], Gurevich [Gur2], Gurevich and Savchenko [GurSav], Mauldin
and Urbanski [MU] and many others. Their results lead to Sarig’s work [Sar1]], [[Sar5] which developed
a set of theorems regarding equilibrium states, the Variational Principle and characterisations of the

existence and uniqueness for Gibbs measures for CMS.

First, note that the Holder condition in the finite alphabet case is too strong in the CMS setting, e.g. a
potential needs to be bounded from below in order to be Holder, but only potentials unbounded from
below can have finite pressure for CMS. Hence, we need some other notion of regularity of potentials

for the countable alphabet case.

Definition 1.3.1. A potential ¢ is said to be of summable variations if ), ., vary(¢) < oo, weakly

Holder (or weakly 0-Holder) if there exists ¢4 > 0 and 6 € (0, 1) such that vary(¢) < c¢9k forallk > 2,
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and locally Holder if the previous inequality holds, also for k = 1.

Next, the definition of Z,,(¢) in (1.2.I) needs to be modified since for each n there may be infinitely
many cylinders of depth n and the sum may easily blow up to infinity, hence Sarig introduced a new

version of pressure in [Sar1].

Definition 1.3.2. Let a € A and set Z,(¢,a) := Y n,_, 114 (x) exp (Snd(7)), define the Gurevich
pressure of ¢ by

Po(o) := nh_)rr;o % log Z,, (¢, a). (1.3.1)
This quantity, introduced by Sarig [Sarl]], is a generalisation of Gurevich entropy which is a special
case of pressure for ¢ = 0. For topologically mixing CMS, by [Sarl] Theorem 1] it is independent of
the choice of initial symbol a € A, and invariant under cohomology i.e., for all ¢’ cohomologous to ¢,
P(¢) = P(¢’). Similar to the Variational Principle for SFT, the Gurevich pressure for CMS can also be

expressed as a supremum.

Theorem 1.3.3. [Sarl} Theorem 2, Corollary 1, Theorem 3], [IJT, Theorem 2.10]EI Let (X, 0, ¢) be topo-

logically mixing and ¢ of summable variations, then

Ps(¢) =sup{P (¢|y): Y C X a topologically mixing finite Markov shift}
=sup {P (¢|y):Y C = compact and o~'Y =Y}

_sup{h(1/)+/qbdu:1/6/\/1(77 /d)dy>—oo}
:sup{h(u)+/¢dV:V€MU, and —/min{¢,0}du< oo},

where P(¢|y) denotes the pressure of the restriction ¢ over the compact space Y. In addition, if ||[£1]|c <

o0, then Pg(¢) < oo.

Just as the finite alphabet case, Pz (¢) only depends on the structure of the periodic points not on the
metric, so the Gurevich pressure can be viewed as the topological pressure of (3, o, ¢). We will simply

write P(¢) from now on.

Definition 1.3.4. We say (X, o) has the big image property, if there exists a finite set B C A such that
for all a € A, there is b € B such that [ab] # 0. Furthermore, (3, 0) has the big image and preimage
property, BIP for short, if there exists a finite set B C A such that for all a € A, there are by,bs € B such
that [byabs] # 0.

2The statements are proved in [Sarl] under stronger regularities on potentials but the proofs hold under summable variation
assumption. See [LJT].
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This is a combinatorial property and is equivalent to the finite primitivity notion in [MU]. CMS with

the BIP property behaves like subshifts of finite type in different ways, e.g.

Proposition 1.3.5. [[Sar5} Corollary 1] If the BIP condition holds,

P(o)= Tim “log 3 exp(S.0(x)).

otr=x
Moreover, Gibbs measures for locally Holder potentials are characterised by the BIP property.

Theorem 1.3.6. Let X be a topologically mixing CMS and ¢ a locally H(')'lderE] potential. There exists an
invariant Gibbs measure if and only if ¥ has the BIP property and P(¢) < oc.

As in Theorem Gibbs measures, when they exist, are constructed from the eigenfunction h and
the eigenmeasure v of the transfer operator £ associated to ¢, given by the generalised Ruelle—Perron—Frobenius
theorem (see Theorem [2.1.2]in the next chapter), i.e., du = hdv. By [Sarl, Remark 3] this measure
is unique up to multiplicative constant, and by [Sarl, Theorem 7] such a p realises the supremum in
Theorem and if sup ¢ < oo, it is the unique invariant equilibrium state [BS| Theorem 1]. How-
ever, there remains the caveat that an invariant measure m verifies the Gibbs property with
respect to a potential ¢ whilst [ ¢dm = —oo, in which case the notion of equilibrium does not make

sense.

Here, we prove that, just as in the SFT case, Gibbs measures for CMS are -mixing. This was referred
to as the continued fraction mixing property in terms of return-time processes for a measurable set in
[ADU], and proved for Markov-fibred systems with the Schweiger property. The original proof was
long and heavy since it was aiming for more general settings, so a shorter version using the transfer

operator is provided here for CMS.
Lemma 1.3.7. Under the conditions of Theorem for u the Gibbs measure with respect to a locally

Holder potential ¢, u is exponentially 1)-mixing.

Proof. By [Sarll Theorem 4, Theorem 81, di. = hdv and for A = e(®)| £*v = \v and Lh = \h.

Firstly, by the locally Holder property of ¢, there is M; > 0 such that
eSnd@)=5n0W) _ 1 < Myd(z,y) (1.3.2)

whenever z, y are in the same partition set.

3for existence of Gibbs measures, this can be relaxed to 3", vars(¢) < oo [Sar5| Theorem 1], but not for exponentially
mixing properties. -



1.3. SARIG’S THEOREMS FOR GIBBS MEASURES FOR COUNTABLE MARKOV SHIFTS 23
Also, by the Gibbs property there is My > 0 such that for each n-cylinder C € C,,, for all z € C,
My IAe5n (@) < () < MpA™me 9@, (1.3.3)
Now define the norm (see [Sarl]]) for a real-valued function f acting on X 4,
Ifllz == l[fllsc + Ds f,
where f is the o —algebra generated by {o[a| : a € A} and
Dg :=sup sup

bef z#£yeb d(%y) .

The operator £ : Lip, ; — L where the spaces are defined by Lip, 5 := {f : X4 = R : [|f[|1, Dsf < oo}
and L:={f:34 = R:||f|lr < oo}

Consider E = [eg,e1,...,en—1] €Cy and F € C* := Un21 Cn, as L*v = v and p is o invariant,
(BN o= F) — w(EYu(F)| = |u(E N o™ HIF) — (o™ E)u(F)
= ‘/ hlp-1poo"Fdy — /h1(,_nE dz//hlp dv

< ‘/1F (Akﬁk(A”E”(hlE) - h/hlE d1/> dv

< (inf h) 1 u(F) H/\k/:k (AL (hlg)) — h/x"z:”(hlE)du

L
where the last inequality holds because p(F) = [ 1phdyr and h is uniformly bounded away from 0 and
infinity [[Sarl, Theorem 8]. The following Lasota-Yorke type inequality holds under our assumptions

(see for example [[AD] Theorem 1.6] or [Sar5, Corollary 3]): there are K, > 0 and « € (0, 1) such that

Hx’mk(x"m (h1g)) — h/)\_”L”(hlE) dv|| < KgrF|IAN""L"(h1g)] L (1.3.9)
L
+Claim. |A\""L"(hlg)||L < M3u(E) for some Ms > 0.
Proof of claim. Itis easy to see foreach E € C,, and « € X 4, there isonly one z € E = [eg, e1,...,en_1]
such that o"z = z, i.e.,
Z = (607...,6n_1,$0,1‘1,...),

hence by (1.3.3), for all z,

AL () (@) = Y PO PO (hp)(y) < A(2)eS DT < My hl|eou(E),

oy=x
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and for z,y € [b] € 3, for z,w € FE allowable with 0"z = x and c™w = y.

AT LM (M) (x) — L"(hE)(y) = A"

es"¢(z)h(z) - eS"¢(w)h(w) ’

< A7 ( es"d’(z)h(z) - h(z)65"¢(w)’ + ‘h(z)es"‘b(“’) — h(w)eS”¢(w)’)
S (w)—Sn(2) h(2)
< [h(2) [ Map(E) |1 = eS20)=526C) | 4 Mypu(B) |(w)] |1 - W]

By the locally Holder property of log h and h (see [Sarl}, §5]) and (1.3.2)) (1.3.3)), since by construction
d(z,w) = 27™d(x,y), the inequality above can be bounded by ||h||cc M3u(E)d(z,y) for some constant

Ms > 0. O
The proof of lemma follows from the claim. O
i

We will prove two sets of limit theorems for asymptotic cover times and substring matching lengths
in Chapter [3| and Chapter [4] respectively, for systems that are exponentially -mixing in which case
Gibbs measures become a natural candidate. For all systems that admit a Gibbs measure, the relevant
potential has to have finite 1—variation, whereas the formalism of equilibrium states for CMS gets more
interesting once the potentials are allowed to have weaker regularities. In summable variations or
weakly Holder cases, the potential can be unbounded with var; (¢) = oo, as a consequence equilibrium
states may not (1) be exponentially mixing, or (2) be unique, or (3) even exist, depending on the
recurrent properties of (X, ¢). If a CMS does not have a Gibbs measure, the next best we can hope for
that is close to the i.i.d. case, is strong positively recurrent (SPR). In this case, the system often admits
an equilibrium state with exponential decay of correlations. The main goal of the next chapter is to

find sufficient and necessary conditions for countable Markov shifts to be SPR.

I am not sure if the locally Hélder condition in the lemma above can be relaxed to >, - ; vary (¢) < oo since the Lasota-Yorke
type inequality may depend on the locally Hélder property of ¢. B



Chapter 2

Strong positive recurrence

In the study of dynamical systems, an invariant ergodic measure with exponential decay of correlations
is highly desirable with a simple motivation: the values of a reasonable observable along the orbit of a
typical point behaves like a sequence of i.i.d. random variables and we have a rich collection of tools
and theorems to deal with such sequences from classical probability theory. For uniformly hyperbolic
systems with some mild assumptions, an equilibrium state with exponential rate of decay of correla-
tion can be shown to exist, but that is often not the case for non-uniformly hyperbolic maps, unless we
have some extra information e.g. the behaviour of Lyapunov exponents at a particular set of points.
For example, in the literature of unimodal maps, many of them demonstrate non-uniform hyperbolicity
for the geometric potential — log | DT'|. Moreover, for S—unimodal maps the Collet-Eckmann condition,
which regulates the geometric behaviour of the image of the non-flat critical point, can be proved equi-
valent to a uniform lower bound of Lyapunov exponents for all periodic points, and further equivalent
to the existence of an acip for some renormalisation of T with exponential decay rate of correlations
[NS]]. For more general non-geometric potentials, e.g. Holder potentials, a list of conditions (see Sec-
tion [2.4| below) that guarantee existence of equilibrium states have been studied since the end of 90s,

and in most cases the measures in question have exponentially mixing properties.

A standard approach to prove that a Markov dynamical system has certain rate of decay of correlations
is to show that the corresponding symbolic shift has the same rate of mixing. In symbolic dynamics,
non-uniform hyperbolicity commonly arises from a countable alphabet. We will first review some
important results of CMS regarding the modes of recurrences, with a particular focus on the notion
of strong positive recurrence which is often equivalent to the spectral gap property. The new results in

this chapter are based on ideas and results in [TZ]], where a new characterisation of SPR for countable

25
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Markov shifts is given based on some controlled boundary behaviours.

2.1 Modes of recurrences
Let (3, A, 0, ¢) be a topologically transitive countable Markov shift and ¢ € SV, where SV is the set
of potentials of summable variations, i.e., ), -, var(¢) < oco. The following definitions are frequently

used by Sarig in his series of works [Sar1], [Sar2, [Sar3].

Definition 2.1.1. Fix a € A and define the return time function with respect to a by p,(x) := 1,(x) inf{j >
1:z; =a}, and

Zy(¢oa) = Y e, oy (x). (2.1.1)

or=x

A potential ¢ on X is called

e recurrentif . o, e "P(®)Z,(¢,a) diverges, and transient if it converges.
* positively recurrent if is it recurrent with 3" ., ne "F(®) 7*(¢, ) < oo, and null-recurrent if this

sum diverges.

The word ‘recurrent’ in definition above reflects the fact that the sums are taken over periodic orbits,
and these quantities do not depend on the state a € A for any topologically transitive CMS. The
roots of recurrence properties can be found in Vere-Jones’ work on Markov chains [VJ]. Heuristically
speaking, a recurrent process implies the Markov chain returns to its starting state eventually while
positive recurrence says this happens relatively fast; in comparison, for countable Markov shifts these

notions are reflected by the behaviours of ergodic sums of periodic points.

Recurrence modes of ¢ govern the behaviour of equilibrium states (or RPF measures, in case it does
not make sense to talk about equilibrium states, e.g. when the measure-theoretic entropy h(v) = oo

and f ¢dv = —o0) in the following sense.

Theorem 2.1.2. [ISar2)],[ISar3, Theorem 2] Let ¥ be a topologically mixing CMS and ¢ a potential of
summable variations with P(¢) < oo. Then ¢ is recurrent if and only if there exists a conservativeﬂ
measure v, finite and positive on cylinder sets, and a positive continuous function h such that L*v =
POy, Lh = eP@)h, and there exists {ay, },, increasing such that a,, =< Jia v 325 e *P@) 7, (4, a) for
all a € A, and for for every cylinder set C and x € ¥,

n

ai > e FP@ (LF1c) (1) —— h(z)v(C).
n P n—o00

In addition,

1A measure is conservative if all wandering sets, i.e., its backward iterates are disjoint, have zero measure.
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* if ¢ is positively recurrent then [ hdv < oo, so without loss of generality we can assume [ hdv = 1,
and for every cylinder set C, e "F'(®) £"1o — hv(C)/ [ hdv uniformly on compact subsets,
s if ¢ is null recurrent, [hdv = oo, a, = o(n) and for every cylinder set C, e "P(¥) L7145 — 0

uniformly on cylinders.

In the theorem above, h is bounded away from 0 and infinity on [a] for each a € A, and v, h are unique

up to multiplicative constants.

Remark 2.1.3. We also refer to the eigenmeasure of L associated to a potential ¢ with P(¢) = 0 as the
conformal measure of ¢ which has the following property: for E C X such that o™ : E — o"™(E) is
injective,

v(e™(E)) = / eI @) du ().

E

To sum up, if the system is null recurrent then there is an infinite RPF measure, whereas positive recur-
rence is a happier situation since the RPF measure is a finite equilibrium state so up to normalisation
one can assume it is a probability measure. If additionally sup ¢ < oo, such an equilibrium state is
unique (see [BS]). However, in none of these cases we are able to confidently say at what rates the
correlations between two continuous functions decay with respect to the equilibrium dy = hdv e.g.
under positive recurrence, the equilibrium can be exponentially mixing or sub-exponentially mixing

[Sar4]. This is addressed in the following section.

2.2 Inducing schemes and strong positive recurrence (SPR)
Here we recall some basics of the inducing process in the context of countable Markov shifts. For any

finite alloable word w, let |w| denote its length. Fix a € A, the a-induced alphabet is
Ay ={lw] :we X, lw >1,[w,a] # 0 and w; = aiff j = 0}. (2.2.1)

The induced shift space is X, := Ao, define the natural projection 7 : X, — ¥ by 7 ([a,], [a;],...) =
(ag,ay,--.). The induced shift system is then (X,, 7, ¢) where

Pa—1

mod=o0%om, and ¢ = Z pocl |om

§=0
Inducing schemes are always full-shifts on A,, and problems arising in the original system (X, A4, ¢)
due to extreme variations of ¢ on partition sets may disappear since var,, (S,¢) < > 2 varg(¢). In
particular, if ¢ is weakly Hélder then ¢ is locally Holder, and the limit P(¢) := lim,, o + log Z,, (¢, [a])
always exists and independent of [a] € A, [Sar3, Lemma 2], and the results concerning Gibbs measures

in §[1.3]are applicable.
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Now we introduce the following quantities defined in [Sar3]:

pald] :=sup{p € R: P(¢+p) < oo}, and Ay[¢] := sup {P(¢ +p) : p < pi[¢]} = P (¢+p2[¢}> :

where A, [¢] is called the a-discriminant and the last equality is due to [Sar3| Proposition 3], obtained
as a by-product of
P(¢+p) —log> e Z;(d,a)| <> varg(e). (2.2.2)
k>1 k>2
For a topologically mixing CMS and ¢ € SV with P(¢) < oo, the discriminant is another indicator
reflecting the recurrence modes: A,[¢] > 0 implies positive recurrence and A,[¢] < 0 implies tran-
sience, while A,[¢] = 0 can be either positive or null recurrent [[Sar3, Theorem 2]. In fact, the case

A,[¢] > 0 is important enough to have earned a separate label.

Definition 2.2.1. ¢ is strong positive recurrent, SPR for short, if for some a € A, A,[¢] > 0. Equival-
entl see for example [ICli, §8.5],

limﬁsup % log Z! (¢,a) < P(¢). (2.2.3)
This is a generalisation of the stable positivity notion in [GurSavl, in the sense that if ¢g is SPR, its
positive recurrence nature remains ‘stable’ under a small perturbation by a nice potential ¢;: if there

is an interval in which each ¢ has P(¢¢ + t¢1) < oo, then ¢y + t¢; is also positively recurrent, and

t — P(¢o + t¢1) is real analytic on such an interval.

Remark 2.2.2. The notion of SPR has been applied to or generalised in other systems (perhaps non-
symbolic), see for example [RV)], [[GST] and [BCS2]]. The key idea is that there is some gap between the
entropy or pressure at infinity and the topological pressure of the potential. In addition to exponential
decay of correlations, SPR also implies other properties of the equilibrium such as the EKP inequality

(which is proved equivalent to SPR) [RS].

Example 2.2.1 (The renewal shift). Consider the Ny x Ny transition matrix M with My, = My; =

M; ;1 = 1for all i € N and all other entries 0, i.e.,

1 11

100
M =

010

The renewal space is defined by ¥ := {az € NSIO : M,

i Li41

= 1}, and the left shift dynamics on X is

2Another equivalent definition commonly used is: there exists p such that P(¢ + p) = 0 [PZ].
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represented by the following diagram.

0 1 2 3

Figure 2.1: Renewal shift

Then the renewal shift system (X g, o) is obviously topologically mixing but only has big preimages so
not BIP, and one can construct a conjugacy between the Bernoulli shift on {0,1} and the renewal shift
with all preimages of 0 removed. The renewal shift is one canonical example of CMS and models the

dynamics of many interval maps with non-uniform hyperbolicity.

Let ¢ : ¥ — R be a potential of summable variations, P(¢) < log||£s1[c < log (2¢5*P?). Let (Xr, @)

be the induced shift on state 0. Note that for all n, Z}(¢,0) = exp (¢(z)) where T = ([a,],[a,],--.),

and a,, is the n-length word 0,n — 1,...,1, so p§[¢] = —limsup, L¢(a,,q,,...).

If ¢ is positively recurrent and sup ¢ < oo, it admits a unique equilibrium state [PZ], Proposition 2.6];

if also we have ¢ weakly-Holder, by [Sar3, Theorem 5] there exists j3. such that

* 0 < B < B.: B¢ is strong positive recurrent with P(S¢) real analytic in /3, continuous but not
analytic at 8. with P(8.¢) < oco.
* B < B < oo: B¢ is transient and P(f¢) is linear in 3.

So for renewal shifts, the one parameter family of {3¢} 3 has a phase transition at (.. For interval maps
T : X — X that are conjugate to renewal shifts e.g. Manneville-Pomeau maps, this theorem implies
that if the lifted potential of — log |DT| to X i has finite pressure, then for some ¢t < 1, —tlog | DT'| has
a unique equilibrium which is absolutely continuous with respect to Lebesgue, for ¢ in some interval

(0,t.) [Sar3| Proposition 1].

2.3 The spectral gap property (SGP)

Now we turn to the discussion of the spectral gap property. Recall that the transfer operator £ = L
associated with ¢ is defined by Lf(z) =3>_,,_, e®W) f(y). Under mild conditions, if £ acts on a nice
Banach space B with a spectral gap (defined below) then a finite equilibrium measure exists and enjoys

many desirable mixing properties (see for example [Bal]).

Definition 2.3.1 (Spectral Gap Property (SGP)). Suppose ¢ : ¥ — R is weakly §-Hélder and P(¢) < oo.
Then we say ¢ has the spectral gap property (SGP) if there is a Banach space (B, || - ||5) of continuous

functions on ¥ such that
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() BCdom(L)and {1¢ : C € C,, n € N} C B, where C,, is the collection of n-cylinders and

dom(L) := {f Yo R Lf(x) = Z e®W) f(y) converges for all z € Z} .

oy=x

() f € Bimplies |f| € Band || |5 < £z

(c) convergence in || - || implies uniform convergence on cylinder sets,

(d) L(B) C B, and L : B — Bis a bounded operator,

(e) The operator L can be decomposed into e*’(¥) P + N, where N, P are bounded operators on B with
PN = NP =0, P? = P, dim(Im P) = 1, and the spectral radius of N is less than (%),

(P if g is weakly 6-Holder, then L4y .4 : B — B is bounded, and z — L4 ., is analytic on a complex
neighbourhood of 0.

Those definitions are taken from [[CS]], where the authors showed the following.

Theorem 2.3.2. [ICS] Theorem 1.1] If ¢ is weakly 6-Hélder over a topologically mixing CMS, has finite
supremum and satisfies the SGP defined above, then P takes the form Pf = h [ fdv, where h € B is
positive, and v a measure that is finite and positive on all cylinders. The measure p with dyu = hdv is in

M, such that

(a) if p has finite entropy, it is the unique equilibrium state of ¢,
(b) there is k € (0,1) such that for all ¢ € L*°(u) and f bounded Hoélder continuous, there exists
C(f,g) > 0such that for all n € N,

]/Moww—/ﬂw/wﬁscmmw7

(¢) the Central Limit Theorem holds (see [Sar6) Theorem 6.4]),
(d) if ¢' is a bounded Holder continuous function, then t — P(¢ + t¢') is real analytic on a neighbour-

hood of zero.

So in short, SGP produces a unique equilibrium state with exponentially fast mixing behaviour, and
it is not an uncommon property. For shifts with finite alphabets, it is well-known that every Holder
potential has SGP. For CMS, the set of SGP potentials is open and dense with respect to a specific class
of topology (see [ICS, Theorem 2.2]); but SGP may fail for different reasons, e.g. the potential ¢ is
transient or null recurrent. It will be useful to find a necessary and sufficient condition to guarantee

the spectral gap property. To this matter, Cyr and Sarig elegantly presented the following theorem.

Theorem 2.3.3. [[CS| Theorem 2.1] Suppose X is a topologically mixing CMS, and ¢ : ¥ — R is weakly
Holder continuous with finite Gurevich pressure, then ¢ has the spectral gap property if and only if ¢ is

strong positive recurrent.
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Therefore, in order to answer whether a CMS admits an equilibrium probability measure with expo-
nential decay of correlations, it is often enough to check if (X, ¢) is SPR, hence in the remaining part

of this chapter, we provide a characterisation of SPR via periodic points.

2.4 Boundary behaviours of countable Markov shifts

Transience is one major obstruction to the existence of equilibrium states, and in [[Cyr] it is established
that transience is possible only when there are infinitely many states in A that get visited by ‘long
excursions’ from a compact part of ¥. More precisely, ¥ has a transient potential if there is a state
a € A with arbitrarily long paths back to itself that do not visit any b € A twice. Paths of this kind
belong to what we refer to as the boundary of the CMS. We can quantify the boundary behaviours via

the following quantities.

Definition 2.4.1 (The F property). Our system X has the F-property if for every state a € A and every
n € N, the number of periodic points in [a] with period n is finite.

The F-property obviously fails for full-shifts.

The F-property holds when (X, 0):

* islocally compact (i.e. for every i € A, >°, 4, M; ; < oo where [M];; is the transition matrix);
* has h,,, < oco. Note that If ¢ is uniformly bounded from below and P(¢) < oo then the F-

property must hold.

Definition 2.4.2 (Entropy contraction at infinity). For each n, M and g, define the set of n + 1-cylinders

1
B(TL7M,(]) = {[an”'vxn] € Cn+1 1 To, Ty < ¢, #{k <n:xp < Q} < nz—\; }7
and write z,(M, q) := #B(n, M, q). The entropy at infinity h., as in [ITV] is defined via

1
hoo (M, q) :=limsup — log z,(M, q), hoo(q) := liminf hoo (M, q),
n M—o0

n—oo

heo = liminf hoo (q).
q— o0
In later chapters we are interested in systems with h., = 0. A trivial example of CMS with h., = 0 is

the renewal shift given in Example

If the F-property fails then h., may not make sense: suppose there are ¢ € A and N € N such that
there are infinitely many periodic orbits of length N intersecting [a] for some a < ¢. By pigeonhole
principle some of these loops contribute, in some sense, to the boundary, but the set B(n, M, q) does

not see these paths if M > N. Another important consequence of the F-property is that M <, (X), the
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space of shift-invariant sub-probability (i.e., the measure of ¥ is in [0, 1]) measures, is compact [IV]

Theorem 1.2]

Remark 2.4.3. Transience arises from non-compactness of the shift space, in the sense that points often
escape to the ‘boundary’ part of the system. A CMS admits transient potentials only if its ‘boundary states’

is not finite. More precisely [[Cyr, Theorem 2.1], if it does not have a finite uniform Rome (defined below).

Definition 2.4.4. Let (X, .A) be a topologically transitive CMS. For a,b € A, we say there is a path of
length ¢ between a and b if there exists w € ¥;_; such that w; # aorbforal j =0,...,{ —2 and
[awd] # 0. A finite uniform Rome is a finite subset A’ C A such that for some N € N,

2N (A\ AN has no path of length > N.

Existence of a finite uniform Rome defined in Definition is ‘good’ for a system in the sense that
it a finite pressure potential may admit equilibrium states. It also results in unusual behaviour of
entropy at infinity, i.e., by our definition, we can show that h,, = —oco. Suppose there exists such a
finite uniform Rome A’. Then for all M > N where N is given by the definition of A’, and each ¢ such
that A’ C [< ¢q] := U!_[al, for all n > N M, if there exists some w € ¥* in B(n, M, q), there must be a
subword of w of length greater than N which contains no states in [< ¢]. However, such path does not
exist by definition of a finite uniform Rome, and we have a contradiction. Hence B(n, M, q) = 0 for all

n > M N, which technically implies h,, = —cc.

Definition 2.4.5 (Contraction at infinity). We define the following quantities:
1
zen(M,q) :=sup {nanb(x) :x € B(n, M, q)} ,

04,00 (M, q) :==lmsup 24 » (M, q), 04,00(q) == lim inf 6y o0 (M),

n—o0 1 —00

000 = hqrgg.}f 0,00 (q)-

Then the system is said to have contraction at infinity (CI), if §4 0 < P(¢).

The name contraction can be seen as the symbolic counterpart of hyperbolicity for interval maps
T : X — X, in which case the geometric potential —log|DT| decreases. The quantity h., is well-
studied in [ITV, Theorem 1.1, Theorem 1.4] and other recent literature, and for CMS with finite
topological entropy, i.e., for P(0) < oo, it coincides with the measure-theoretic entropy and Buzzi’s

graph-theoretic entropy at infinity [Buz].

Definition 2.4.6. For ¥ a [topologically transitive] CMS and ¢ : ¥ :— R of summable variations, the

system is said to have:
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Uniform contracting structure (UCS) if

er (0) 1= sup { 18,0(0) :0"(a) = < P(0)

Compact returns contractions (CRC) if given ¢ € N, there exist Cy € R and \; > 0 such thatif x € ¥
has xg, z, < q then

Sng(y) < Cq = nAg;

Contraction at infinity (CI) if 64,00 < P(¢).

The condition (UCS) should be compared with other notions of ‘hyperbolicity’ or ‘contraction’ that
were defined in various ways for interval maps to show existence of equilibrium states and, in most
cases, with exponential decay of correlations. We provide a partial list here below, where ¢ is often

taken to be a Holder potential.

(1) sup ¢ —inf ¢ < hy,p, see for example [HK, BT1];
(i) sup ¢ < P(¢), see [DKUI;
(iii) there exists ny € N such that sup ¢y S,,¢(z)/no < P(¢), see [IR| LiRiv2] and [LSV] (the last
one involves a covering condition);

(iv) there exists Ay > 1 such that for all = € [0, 1] with f?(z) = x for some p € N, |D fP(z)| > A}.

Our (UCS) condition is closest to (iv) which has been proved to be equivalent to the existence of
an absolutely continuous probability measure with exponential decay of correlations for a class of

unimodal maps, see [NS].

We first show that for a system (X, ¢) with some boundary conditions, [(UCS)| is equivalent to |(CI)
meaning that in order to understand the Birkhoff averages accumulated on the paths escaping to

‘infinity’, it is enough to look at the behaviour of periodic points.

Theorem 2.4.7. Let (X, ) be a topologically transitive CMS with the F-property, ¢ a potential with
summable variations and the pressure P(¢) < co. Then|(UCS)|is equivalent to|(CI)

The proof will be split into several lemmas. In the remaining part of this chapter, since P(¢) < oo is
always assumed, by subtracting a constant from ¢ we can without loss of generality take P(¢) = 0.

Also, take A = Ny so we have a natural ordering of labels.

Recall that B, := Zk22 varg(¢) < oo. For any allowable k-word w = wy,...,wr—1 € Xj such that

[wi—1,wo] # 0, let (wo, - -, wr_1) denote the corresponding periodic point of period k.
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Given a,b € N, define

£(a,b) :=min{k : Jw € Xy, wg = a and wb € Ty11}.
For each pair a, b, £(a, b) is finite by topological transitivity, hence ¢(q) := sup,, ,<, £(a,b), is also finite.

Again by topological transitivity, for any = € ¥ and n € N, there is ¢ = ¢(z,,,z9) > 0 and we can pick a

finite word w(z,,, zo) € [z,] of length ¢ such that the following concatenation is allowed

W(Tn,y 0)2T0s - - -y Tn—1 € Lppps (2.4.1)

which are the first n 4 ¢ symbols of a periodic point z = (w(xn, Z0)T0,y - - - 7xn,1>.

Lemma 2.4.8. Suppose that ¢ has summable variations. If we define

C,(¢):= min inf ]{Sg(ayb)d)(y)},

a,b<q y€clw(a,b)b

then we have C' (¢) > —oo.

Proof. This follows since there are finitely many words w(a, b) for a,b < ¢ to consider and Sy, ;)¢ is

bounded on each [w(a, b)b] by summable variations. O

Lemma 2.4.9. For a topologically transitive CMS, ¢ of summable variations, (UCS) implies (CRC).

Proof. Let q € N be given and pick )\, > 0 small enough such that x,..(¢) < —2X; < 0. Suppose z € &

has xg, z,, < q. Then for z = (y(mn,xo)xo, . ,xn,l) defined as above,

C(9) + Sno(x) < Spyeg(2) +2By < 2By — (n + min {(a, b)) Ag

a,b<q

by Definition2.4.6} where C(¢) > —oc as in Lemma Hence S,¢(z) < Cq — n\, where C; =
max {0,2B, — C,(¢)}. O

It is straightforward that (CRC) implies since for all z € ¥ such that zg,z, € [< ¢], (CRC) does
not care whether z; € [< ¢] or not, for j € [1,n — 1]. To complete the proof of Theorem [2.4.7] it only
remains to show that implies (UCS) for, by the next two lemmas, non-positive potentials.

Lemma 2.4.10. There exists h : ¥ — R bounded on each 1-cylinder such that for ¢’ := ¢+log h—log hoo,
we have ¢/ < 0. Moreover; ¢’ has summable variations (or is weakly Holder) if ¢ has summable variations

(or is weakly Holder).

This is essentially [Sar3, Lemma 1], but we sketch parts of the proof here for completeness.
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Proof. If ¢ is recurrent, then h is the eigenfunction of the transfer operator £ associated to ¢. If ¢
is transient, take h = Zn21 L"1(. The regularity follows as in [Sar3, Lemma 1], although there
the shift is assumed to be topologically mixing, » remains finite and non-positive under topological

transitivity. O

We next show that ¢’ inherits from ¢.

Lemma 2.4.11. If §4 oo < 0, then dg o < 0.

Proof. By definition, there exist ¢ > 0 and N., M., q. such that

ZGML(Ma qe) < —2¢ (2.4.2)

forall n > N. and M > M.. Then for every n > N, large enough that "Z‘;&qf) < 1y, forevery z € B
for some B € B(n,2M,q.), as in (2.4.1), there exists an allowable word w = w(x,,xo) looping x,,
back to z, and a periodic point y of period n’ = n + |w|, such that [y, ..., Yptw-1] € B(n', M, q.),

y = (To, .-, Tpr—1w) and by summable variations,

Snd'(x) < S (y) = Cy(¢) + By = Sw(y) — Cy(¢) + By,

where C (¢') is defined as in Lemma [2.4.8 Then (2.4.2) implies
Snd' (z) < —2n'e — Cy(¢') + By

and by choosing n large, this implies that for all M > M., zy4 ,(M,q.) < —e, and consequently

d4.00(ge) < —e. Since this inequality holds for all ¢ > ¢., we conclude that ¢4/ < 0. O

Note that this lemma also holds for any cohomologous ¢ = ¢ + £ — £ o o, provided £ has summable

variations.

In the following lemma we show that we cannot have a sequence of periodic measures supported on
a finite collection of partition sets such that their integrals of ¢ converge to zero (in non-normalised
cases the limit is P(¢)), and simultaneously converge to a probability measure. The proof requires
compactness results regarding the space of sub-probability measures on X, in particular we say a
sequence of measures (u,, ), converges on cylinders to a measure y if for any C € Cy, p,,(C) — p(C) as

n — 0o, see [IV] for more details.

Lemma 2.4.12. There is no ¢ € N and sequence (x*);, of periodic points of period pj, such that —Spp9( k) —

0 and vi([< q]) — 1 as k — oo, where v, = Zp’“ 8 i
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Proof. Assume by contradiction that the lemma is false, we will show that there is an equilibrium
state v that has zero measure-theoretic entropy, which, by for example [Sar6l Theorem 5.6], is a

contradiction.

Let ¢ be as in Lemma [2.4.11] and it is easy to see S,¢(z) = S,¢'(z) for all n € N and all "z = .
Suppose there is such a ¢ € N and sequence of periodic points as in the statement of our lemma.
Note that [ ¢’ dvy, — 0. By [IV, Theorem 1.2], M<;(X), the space of shift-invariant sub-probability
measures on Y, is compact with respect to the convergence on cylinders topology, i.e., there is v €
M<1(2) such that v, — v (up to subsequences) on cylinders. Our assumption implies that v is a
probability measure. Hence, as (v ), and v are probability measures, [IV, Lemma 3.17] implies that

the convergence also holds in the weak-* topology. In particular, if we let

¢'(z) if ¢'(x) > —L,
¢ (z) =
0 if ¢/(z) < L.
Then ¢/, is continuous and bounded whence [ ¢ dv,, — [ ¢}, dv.

Claim. Given L > 0, for any € > 0 there exists K such that for all k > K,

‘/(ﬁ’L dvy, — /¢’ dvp,
/(Z)/ dvy, = /(b’L dvn, +/ ¢ AVn, ,
{¢'<-L}

if the claim is false then there is £ > 0 such that for any N € N we can find k¥ > N such that

/ ¢ dvp,
{¢'<-L}

But since ¢’ < 0, this means [ ¢’ dv,,, < —e/4, contradicting the fact that [ ¢’ dv,,, — 0. O

< eg/4.

Proof of Claim. Since

>e/4.

Now given L > 0, take K. > K/, where K/ is given by the claim, such that | /¢ dvnk| < ¢/4, and
|[ ¢}, dv— [ @], dvn, | <e/2forall k > K.. Then

’/Qb/[,d’/ < /QS/LdV_/QS;;ank +‘/¢/Ldynk
<%+Z+§:5.

Now the Monotone Convergence Theorem implies — [¢} dv * — [¢' dv = — [¢ dv as L — oc.
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Moreover (2.4.3) and weak* convergence of v, to v imply \ [o dz/| <eforalle, ie, [¢dv=0,a

contradiction. O

Proposition 2.4.13. Under the assumptions of Theorem implies ({UCS).

The idea of the proof is that must hold for periodic orbits which ‘spend most of their time in a
compact part’ of the space. In the finite alphabet case this is trivially true, and for CMS such is assured
by Lemma [2.4.12] and then ensures that orbits which ‘spend significant time outside the compact
part’ satisfy contraction. Combining these two arguments we get (UCS)).

Proof. Suppose holds for ¢ hence ¢’ and (UCS) fails. Then by definition and non-negativity of ¢’

there exists a sequence of periodic points z!, 22, ... with periods p;, ps, ... and with Birkhoff averages

1
Sp = 7Spk¢(xn) <0
Pk
for all n and lim,,_,o0 85, = 0.

By the definition of and Lemma [2.4.11] for all ¢ > 0 such that d4 o < —e < 0, there exist
N., M., q. such that for n > N.,, M > M., q > q. and all = such that [x¢,...,2,_1] € B(n,M,q),
Sn¢'(x) < —ne.

Given ¢, N € N, let Aj< v be the set of words w € ¥ such thatwy < gand w; > qfori=1,..., N—1,

and wq' € Xy for some ¢’ < ¢. Let

U {lwq] : wg' € Sy}

Ai<q := Un>1A[<q,~ and for each w € Aj<y), [w, < ¢] :=
q'<q

Given z € X such that zg,z,, < ¢, we can decompose zg,...,Tp—1 = W VWV, ... WV, Where
w; € Aj<g and v; € {0} U (Un{l,...,q}™) forall 1 < i < k. For each z, let D(x, q) denote the set of

words w; in this decomposition.

Given g > ¢, define the proportion function ((-)
1 1
((@") = — > . (2.4.4)

p
”{meD(w",qe)ﬂ(UNZNE Acgon)}

Here >’ means that we count with multiplicity, i.e., if w appears k times in the decomposition of =",

we sum its lengths k times.

Notice that since w; < ¢ if and only if j = 0 for each w € Aj<q.n, so long as (N + 1)M. > 1,

Sy¢'(x) < —Ne for x € [w]. Hence, since we can assume that (N, + 1)M,. > 1, we can show that
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limsup,,_, . ¢(z™) = 0: if there exists n > 0 such that lim,,_, . ((z™) > 0, by the non-positivity of ¢/,

1
lim inf s,, < liminf — E ' sup S|y @' ()
{EGD(wnﬂs)ﬁ(Uszs ASQEYN)}
1
< liminf — 3 —Juwle (2.4.5)

n— o0 p
"{weD(@",q:)NUysy, A<oen)}

<limsup —¢ (z") e < —me < 0,

n—oo

contradicting our assumption that lim,, .. s, = 0.

By the F-property and topological transitivity, #{Un<n, A[<q,~} < 00, and the following quantity is
also finite:

¢’ (¢, N) := min {q' eN:ifw € Uyen. Aj<g,n thenw € [< q/}@l} ) (2.4.6)
Therefore, since limsup,,, . ((2™) =0,

pr—1

1
lim v, ([<¢']) = 1 where v, = — 8o gk s
n— oo ([ 9 ]) ¥ Pk ; ’
which this contradicts Lemma [2.4.12] hence implies (UCS). O

2.5 A characterisation of SPR for countable Markov shifts

For countable Markov shifts, with no information about the entropy at infinity, a usually strong condi-
tion for interval dynamics like sup ¢ < P(¢) does not even guarantee existence of an equilibrium, let
alone its mixing conditions. However if we control /., and ., it is possible to show the system is SPR.
In this case, if the potential is weakly Holder, by Cyr and Sarig’s results, there is a unique equilibrium
state with exponentially mixing behaviours. In this section, we combine the types of ideas mentioned
in previous sections of this chapter to show a characterising condition for SPR. If the boundary beha-
viours of the CMS is ‘nice’, we need only to focus on the ergodic averages on periodic orbits reflected
by the following quantity, Xper(¢) := sup {1 59,6(z) : 0™(z) = 2}, and check if xpe,(¢) < P(¢). The

set of theorems we are going to prove is comparable to the list in [NS, Theorem A].

The first proof ingredient is to use entropy at infinity defined in Section (see also an equivalent
notion in [Buz]) to control the asymptotic number of excursions from the compact part of the alphabet,
and by Theorem we can look at the global behaviours of periodic points to ensure (CI). Then
together they produce some pressure gap at infinity which is similar to the idea in [RV]. The next step
to show uniform contraction implies SPR involves re-inducing arguments, and can be compared to the

proof of [DT, Lemma 2.17, Theorem 7.14], where the entropy at infinity for the symbolic version of
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the finitely branched interval maps is zero. The main theorems are presented below.

Theorem 2.5.1. Let (X, ¢) be a topologically transitive CMS with the F-property (see Definition
above), ¢ a potential of summable variations satisfying and assume that ¢ oo + hoo < 0. Then ¢ is
SPR.

Theorem 2.5.2. Let (X, 0, ¢) be a topologically transitive CMS with the F-property, ¢ a potential with
summable variations such that P(¢$) < 4o, and entropy at infinity ho, = 0. Then (UCS) holds if and
only if (2.2.3) holds.

Remark 2.5.3. Theorem implies that if hoo < hiop, Which means that the measure of maximal
entropy is SPR (see [Bugz, Proposition 6.1], [ITV, Proposition 2.20]), then the equilibrium state for a
potential ¢ with sup ¢ —inf ¢ < hiop — hoo must also be SPR, since this automatically implies §4 oo +hoo <
P(¢). This is shown to be the case for interval maps in [BT1]]. There are various cases of systems which
have a coding by a countable Markov shift and where it may, in the future, be proved that the measure
of maximal entropy is SPR the above idea would then apply. For example we might expect the surface

diffeomorphisms considered in [BCS1] to satisfy these conditions.

Remark 2.5.4. Also by [ICS]] for topologically mixing CMS, the set of SPR potentials is open and dense in
the set of weakly Hélder potentials (with respect to a sequentially defined topology). Then our theorem
implies that for CMS with h., = 0, the set of| is also open and dense with respect to the same topology.

It is also worth pointing out that in most literature concerning countable Markov shifts and SPR, the
default assumption on the transition matrix is topologically mixing which is slightly stronger than
topologically transitive. For our results, if the system is topologically transitive but not mixing, one
can use spectral decomposition (see the paragraph before Proposition[2.5.7) to resolve the discrepancy
between different assumptions. Let us first prove Theorem[2.5.1} for which an example with §oo +heo =
P(¢) will be provided in Section [2.6]so our condition is sharp.

For proofs below, we again assume without loss of generality that A = Ng.

Lemma 2.5.5. Suppose (X,0,¢) is a topologically transitive mixing CMS with the F-property, ¢ has
summable variations with P(¢) < co. Then for all ¢ > 0, there exists ¢ € N and K, > 0 such that for all

positive n, if xg,x, < gand xy > qforall1 < k <n —1, then

Sno(z) < Kg+n(dg00 +€).

Proof. Let € > 0 be given. By definition of d. there exists ¢ such that d, o (g, M) < d4.o + 5 for all

M large. Then there exists N, such that for all n > N, if x € ¥ is such that zy, 2, < ¢, but 23 > ¢ for
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1=1,...,n—1, then

1

~5,0(2) < 8.00(0: M) + 5 < g0 +<.

Since the F-property implies that for each n the number of words of length n which start and end at

[< ¢] are finite, also using summable variations,

K, := max { max sup {Sno(x) : xo, zn < q} ,O}

is finite and satisfies the lemma. O

Given ¢ € N as in the lemma, let Y = [< ¢| and define 7v : Y — N U {oo} by 7v(z) := inf{n > 1:
o"(z) € Y}. Thenlet F : Y — Y be the first return map F' = 7. Let C/ be the set of p-cylinders with
respect to (Y, F'), so that Z € C{ implies that F(Z) = [a] for some a < g. The topological transitivity
of the original system means that there is some J € N such that for any Z, Z’ € C{ there is j < J such

that Z’ C F7(Z), which is a stronger condition than the BIP property (see [Sar5]).

Define the corresponding induced potential ¢y = Y '% o o' and note that this has summable

variations (in fact varlr,?)y < 00), so B 5 < 0. By for example [Sar3] Theorem 2], P(g?)) < 0, so
setting ¢ = ¢ — P(¢) we have a potential of zero pressure, and there is an ¢-conformal measure (see
Remark above) my and an equivalent invariant Gibbs measure uy, see [[Sar5, Theorem 1]; also

Bj = B, < oo. Note that if ¢ is recurrent then ¢ = ¢. We also define SE'¢y = 527" 6y o F.

Lemma 2.5.6. Thereis C; > 0 and € > 0 such thatif Z € Cf and for some p > 1,
p—1
> v(F'(2)) =n,
i=0

then
my (Z) < CVexp (n(dp,00 +¢)).

Proof. Writing 7y (F(Z)) = 7, Z is an (n + 1)-cylinder with respect to o of the form
[ZOa cey BT =15 2T sy BTp—1 Z'rp]
where zg, z,, < g fori=1,...,p. By conformality and Lemma [2.5.5]

my ([20]) = /[ | o~ Sn 6@ PP g
Zo,...,z.,-p_l

> mY([ZO Zr 1])@‘ SUP,c z Sné(z)+pP ()
> yoeey Bp— .
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Hence
my (20, -+, 2r,-1]) < exp (p(Ky = P(6)) + 105,00 + ) ) my ([20]),

Kq—P(¢)

so setting C; = ¢ , we are finished. O

To conclude the proof of Theorem [2.5.1} one needs to combine the Lemmas above with re-inducing

arguments.

Proof of Theorem The proof is similar to that of [DT, Theorem 7.14]. As we will see, by (2.2.3)
it suffices to show the inducing scheme on some 1-cylinder [a], that is the first return map ([a], 0%*) to

[a], has an exponential tail.

Pick € > 0 such that

5¢,oo + hoo < —4e,

choose ¢ satisfying Lemma and such that for all large M,

So for (Y, F) as above, which must also satisfy Lemma [2.5.6] by topological transitivity there exists N
such that for all Z € CF,

N
Y c|JF(2) (2.5.2)

j=1
Pick some 1-cylinder with respect to o, Yy = [a], with my(Yy) > 0 and let my, be the conformal

conditional measure here.

Claim. There is some uniform constant 3 > 0 such that for Z,, € Cf' and N as in (2.5.2),

my (x € Zy : Fi(z) ¢ Yo,j=n,...,n+ N —1)
my (Zn)

<e P, (2.5.3)

Proof of claim. By (2.5.2), for each b € A such that [b] C Y there is some cylinder (with respect to F)
A C [b]and 0 < k(A) < N —1 such that F*(4)(A) = [a]. Denote the (finite) collection of such cylinders
by B. In particular there is some A € B such that A C F"*(Z,,). Letting A’ = F~" AN Z,, it suffices to

my (A/)
Y

find a lower bound for Z>

independent of Z,, € CI" and A € B.

Then similar to the proof of Lemma , mingepinfye g S}f( A) ¢y () is bounded from below by the

finiteness of B and summable variations .

By conformality of my, forany C C Y, if F™ : C — F™C is injective, my (F™C) = [, exp(—=S}, ¢y )dmy,



42 CHAPTER 2. STRONG POSITIVE RECURRENCE

hence
my (A') my (A) FT . F7
> —sup S, fS
mY(Zn) = my(F”Zn) €Xp b;j) n (bY + 12, n (bY
. my([a])efg(ay)einfzﬁ S @v(@) 5
my(Y)
uniformly, as required. O

Claim. Foreach k > 1,

<e kB, (2.5.4)

Proof of Claim. This claim is proved by induction. As Y, = [a] can be written as a union of 1-cylinders

with respect to F, (2.5.3) and the fact that for all positive numbers «, b, ¢, d, % < max{%,g s
together implies _
my (xEYO:FJ(a:) ¢Y0,j:1,...,N) i
e .
my (Yo)
Assume inductively that for each i > 1,
Yy : FJ Yo,7=1,...,iN )
my (Jj € Yo (J?) ¢ 05J ) b ) < eflg.
my (Yo)
Defining the set
2 ={ZeCly, 11 ZCYy, FI(2)¢Yy, j=1,...,iN},
by (2.5.3) and the inequality above:
my (Z‘GYOZFj(LL') ¢Yo,j: 1,7(l+1)N)
my (Yo)
1 my (r€Z:Fi(x) ¢ Yo, j=iN+1,...,(i +1)N
= i 2 ™ Ziwen) |
my (Yo) ;= my (Zi(N+1)
1 €Yy: FI Yo,j=1,...,iN
T Z my (Z)e™? < e Y (€Y (@) ¢Y 0 J i)
my (Yo) /= my (Yo)
< e DB, O

Letting 7' = ~yn for some v € (0, 1) to be determined later, we can split the set {z € Yy : p,(x) =n}
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depending on whether x visits Y more or less than 7" times in its first n symbols, which can be written

T
my, ({pa =n}) < my, | 4§ @al@) =n, > 1v(F/(2)) > n
j=0
T .
+my, [ al@) =n, Y v (Fi(z)) <n
7=0

=I+41I.

By (25.4), I < ZZ:T exp (—£B) < Cyexp (—% ), for some C, € R. The number of n-cylinders
with respect to o which spend a proportion v < 1/M of their o-iterates up to n in Y is no more than
#B(n, M, q). Moreover, for all large n, #B(n, M, q) < Cze™(h=(M.9)+¢) for some C5 > 0, so combining
this with Lemma [2.5.6/and (2.5.1) we get

II < Ci‘r exp (n(0g,00 +€)) #B(n, M, q)

< 0T Csexp (n(84.00 + hoo(M, q) + 2¢)) < CT Cs exp (—ne).

Then choosing v = min { , both I and IT are exponentially small so that

1 e
M’ 2log Cy

1
limsup — logmy, ({¢q =n}) <O0.
n

n—oo

As my, is conformal,

my,({pa=n}) = Y. SO > 72 q),

o a=1,pa(2)=n

where i(x) corresponds to the number of hits to Y before Y;. Hence (2.2.3) holds and the system is

strong positive recurrent. O

Theorem [2.5.T| means that (UCS) implies SPR. For the other direction of Theorem it suffices to
prove the statement under topological mixing since we can use spectral decomposition, a tool to reduce

arguments on topologically transitive to topologically mixing.

Briefly speaking, if (X, o) is a topologically transitive CMS but not topologically mixing, by Proposi-
tion there exists
p:=ged{n:3Ja € A,z € [a] s.t. p(x) =n} > 1,

called the period of ¥. The alphabet is divided into p equivalence classes {A; ..., A, 1} and ¥ =
Lﬂf;ol Y, 8 ={reX:xy€ A}. Then (¥;, ¢,, 0P) is conjugate to a topological mixing CMS whose
alphabet is given by the first return words for a € A;, and most statements (especially those in this

chapter) proved for (3;, ¢, o?) remain valid for the original CMS. For more detailed discussion, see
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for example [RS] §2.2,86].
Proposition 2.5.7. Under the assumptions of Theorem i.e., topologically transitive, F property

holds and h., = 0, SPR implies (UCS).

Proof. By SPR there is a € A such that A,[¢] > 0. First by [Sar3] Lemma 3], P(¢) = 0 implies the

induced pressure on [a], P(¢), is zero, and SPR implies that there exists ¢, > 0 such that

P(p+ 2¢,) < 0. (2.5.5)
Moreover, as in (2.2.3)), there exists NV, € N such that for all n > N,, all z such that ¢, (z) = n,

1

ES"QS(I) < —&q4. (2.5.6)

Suppose by contradiction that xpe(¢) = sup,,>1 sup {Sné(z) : "2 = z} = 0; take ¢’ as in Lemma(2.4.11
and xper(¢') = Xper(¢). Then similar to the proof of Lemma [2.4.12| there exists a sequence of periodic

points x', 22, ..., with periods py, p», ... and Birkhoff averages
~lg s =Ls, ¢an d lim s, =0 2.5.7)
Sn_pn pn O( = b, @ (") > —g, an Jim_ s, = 0. .5.

Case 1. Suppose there exists € {z',2%...} such that Vk > 0, z; # a. Then as in (2.:4.1), by
topological transitivity, there are words v, w of length ¢; = ¢(a,x0) and ¢y = ¢(z,,_1,a) respectively

such that vy = a, vy € E‘y|+1, Tp—1W € Z\M|+1’ wa € Z\HPrl’ hence
VIO, -+ Tn—1W € Dy 4ty

Moreover, for each k& € N and ny, = kn + ¢, + > there is a periodic point y(k) € [a] with ¢, (y(k)) = ng

of the form:

y(k) = (y (zo, . - ,mn_l)kw)

where (zo,... ,xn_l)k means the string is repeated & times. By summable variations, there exists a

constant C' > 0 such that for all %,
Zy, ($,a) > exp (Sn, d(y(k))) > exp (C — kne,).

Then as in [Sar3], (5)],

P(¢+p) —logd 5, ekP 71 (o, a)‘ < By, therefore,

o0 oo
00 = logz eeatCeSn (k) < O 4 log Z ez (¢,a) < P(p+e,) + By + C,
k=1 n=1

which is a contradiction to (2.5.5) since By < .
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Case 2. Now suppose all » € {z!,22, ...} contain state a. Without loss of generality one can suppose
xl = a for all i by periodicity. Recall from (2.2.1) that the induced alphabet A, C %* consists of
cylinders of the form [w] where w; = a if and only if i = 0, and moreover wa € X,|41, i.e., each w is a

first return word to a.

For all n,
kn—1

2" = (wy.-wy, ;) for some k, > 1, w; € A, and Z lw;| = pu;
=0

that is, each ™ can be decomposed into several first return words.
As S, () = S¢’ (z) for any periodic point with period m, non-positivity of ¢’ and (2.5.6) imply that
for all first return words w with length longer than N,
sup Sy ¢’ (x) < —|wleq.
rew]
Letting A, % := {w € A, : |w| > k}, re-define the proportion function similarly to (2.4.4),
/!

¢ {at. } o 0,1, () = — 3 ul,

Pn
we{af.ap N Aasn, }

where Y’ again means that we count with multiplicity. Then repeating (2.4.5) with ¢ = ¢, this defin-
ition ensures lim,,_,, {((z™) = 0 since otherwise we contradict the property (2.5.7) of our periodic

points. By the F-property, we can define the function ¢, by
¢(N):=min{ge N:ifwe A, <n, thenw; < gfori=0,...,|w| —1}.

The sequence of probability measures

pn—1

1
Vp = p—k go (50._7‘$n

satisfies lim,, v, ([< ¢ (No)]) = 1. But since limg_, o S5, = 0, we have a contradiction to Lemma|2.4.12]

hence such sequence of periodic points does not exist. O

This concludes the proof of Theorem [2.5.2]

2.6 Bouquet examples
The conditions for Theorem [2.5.1]|2.5.2| are weak, and so our results are applicable to a wide range
of CMS. In this section, a special type of CMS is constructed for which our theory applies as well as

exhibiting edge cases to demonstrate the sharpness of our results.
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Our examples take the form of ‘bouquet’ Markov graphs, see [Rull, Example 2.9][[Ru2], some of them
which inspired this section come from codings for dynamical systems, particularly in the case of interval
maps f : [0,1] — [0,1]. For some subset Y C [0, 1] with return time function ¢ = ¢y : Y — NU {o0},
the inducing scheme F' = f¥ defines a Markov map on Y/, i.e., there is a partition {Y;}; such that ¢|y,
is some constant ¢, and F(Y;) is a collection of elements of this partition. We can associate bouquet
Markov graphs with shift dynamics, a potential ¢ : I — [—o0, 00] is then lifted to the symbolic model.
For example, such a coding can be done for general multimodal maps of the interval, as shown in, for
example, [BT2|, Theorem 3], or more classical and specific inducing schemes like those given in [BLS]]

(which include Collet-Eckmann maps).

Bouquet setup
Following [Rull, Ru2l, let a : N — Ny with a(1) = 1. We define our set of vertices as

V::{T}UG{UZ’izlgiga(n), 1§k§n71},

n=1
where all vertices with distinct labels above are distinct vertices. We call r the root. For notational
convenience write vg’i = v™" = r. Then the only allowed transitions in our Markov graph are vZ’i —
vZ’jl for 0 < k < n — 1. This defines a bouquet of loops: with a(n) disjoint simple loops (from r back
to r) of length n. The resulting shift space which we refer to as a bouquet shift is ¥ = Xy : it has a(n)
periodic cycles of period n. The topological entropy of Xy, is given by the formula

1
hiop = lim sup — log p(n),

n—oo N

where p(n) is the number of length n loops starting and ending at the root, and lim sup can be replaced

with lim since the shift is mixing.

Figure 2.2: Case a(n) = 1 for each prime number n, and 0 otherwise. Picture credit to M. Todd.

Below we will make various choices of (a(n)),, and potentials ¢ : ¥,y — R. Our analysis will be via

first returns to [r]. Note that [Rull [Ru2] were concerned with measures of maximal entropy (in which
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case we set ¢ = —hy,,(0) so that P(¢) = 0), rather than the more general setting of equilibrium states

that we are interested in here.

Lemma 2.6.1. h., = limsup,,_,, 1 loga(n).

Proof. Suppose that limsup,,_, ., = loga(n) = log A, which we may assume is finite, as otherwise the
conclusion is immediate since we can prove (in the next paragraph) i, > log A. Then for € > 0 there

is C' > 0 such that for an infinite sequence of n; € N,

1

6)\7%(1—6) < a(nk) < C)\nk(l—&-a)’
and indeed the upper bound holds for all n; € N.

We first show that he > limsup,,_, ., L loga(n). Fix M, q € N. If n is large enough so that (n+1)/M >
1, then any of the simple loops of length n that only intersects [< ¢] at the root r is in B(n, M, q). In
other words, z, (M, q) > a(n) > £A"(1=¢). Taking logs then divide by n we find that h(}M, q) > log A,

hence the claimed lower bound holds.

For the upper bound, fix M, ¢ and notice that for each n, if [z, ..., z,_1] € B(n, M, ¢q) then it contains
no more than n/M disjoint simple loops. In other words, it visits the root r at most n/M times. Then,

as for all M > 2 thereis (}) < (,,},,) forall k < n/M,

n/M
n/M n
#B(n’ Ma q) < 4 Z a(il) C. a(zk) < Z (k) Ck)\n(l-i-s)
i1+ Fig=n k=1
k<n/M
n n n n-e n/M

< on/M Y yn(1+e) < /M \n(i+te) .
a M n/M) ~ M n/M

Therefore, hoo (M, q) < 45 (logC +1log M + 1) + (1 + €) log A. This upper bound is independent of g,

hence hoo = limps 00 hoo (M, q) < (1 + ) log A. As € > 0 was arbitrary, ho, < log A as claimed.

2.6.1 UCS is a weak condition

Here we will use a simple set of examples to compare (UCS) with other conditions of this type.

Set a(n) = 1 for all n; notice that since the number of compositions for each number n € N is 2"~1, the
topological entropy of this bouquet system is log 2 and by [BBG, Theorem 6.4] Xy, is almost isomorphic
to the renewal shift defined in Example Set qﬁ\[m?,l} = —nlog?2 and ¢ = 0 otherwise. Note that

this potential is Markov, in the sense that for all z, ¢(x) = ¢(xo,x1) so the induced potential (with
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respect to [r]) ¢ : [r] — R is Bernoulli i.e., ¢(T) = ¢([z,]), and takes the value —nlog2 on the vertex

corresponding to the loop of length n. Then

P(¢)=log [ Y 2% =0.

n>1

Since, moreover, ) -, 5 < 00, ¢ is positive recurrent and has P(¢) = 0.

This system (Xy, 0, ¢) clearly satisfies since for the periodic point ,, of period n, 15, ¢(z,) =
—log2. On the other hand, the hyperbolicity condition as in [IR, [LiRiv1] fails since for any n, there
is a point y,, € [vf”lvg 1o vZ’_ll] such that S,,¢(y,) = 0. Finally, regarding the conditions of [LSV],
this would require } .. Sup,cc e?®) < oo as well as a condition like hyperbolicity to hold, both of

which fail here.

Remark 2.6.2. One can modify ¢ to be uniformly bounded, e.g. putting weight —2log2 on n/2 of the

vertices in the loop of length n (suitably adjusting for when n is odd).

2.6.2 An example showing the sharpness of Theorem |2.5.1
Here we give a class of examples where (UCS) holds, but d4 o + ho = 0 and (2.2.3) fails, so that the
condition 4, o0 + hoo < 0 in Theorem is necessary.

Let a(n) = 2" and C, 8 > 0 to be chosen later. Now define ¢|,,] = logC, ¢|[myvi] =logC —nlog2 —
Blogn and ¢ = 0 otherwise (as in Remark we could also spread this potential out if desired).

First observe that Z, (¢, [r]) > C2"2 "n~", so P(¢) > 0.

Taking the first return map to [r] the induced potential ¢ corresponding to loops of length n takes the

value log C' — nlog2 — Slogn. Then
P(¢) = log (C > a(n)e—"”g?—’“‘)g”) = log (C¢(8))

where ¢ denotes the Riemann zeta function ((s) = >, ., n~°. We use the ideas of Hofbauer and Keller

presented in [IT, Section 4.1], generalised to this setting (see also the ideas of [Rull, Table 1]).
(a) If 5 > 1 and we choose C' = 1/¢(/3) then the pressure of the induced system is zero, ¢ is recurrent
and P(¢) = 0.

(b) If 5> 1and C > 1/{(B), or 5 € (0,1), then the pressure of the induced system is positive and

this is not interesting for our purposes (note this would imply P(¢) > 0).

() If 8> 1and C < 1/¢(p) then ¢ is transient and P(¢) = 0.
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We will now assume that we are in case (a).

Since

C Z na(n)e "les2-Aloen — Z nt=#,
n n
the system is positive recurrent, and we have an equilibrium state p4 here, if 5 > 2 (if 8 € (1, 2] then
¢ is null recurrent); moreover there is a conformal measure m,. Since hy,, (o) must satisfy

1= Za(n)e*”htw(”) = Z e "hiop(0)

n

we see that hy,,(0) = log 4.

The fact that ho, = log2 follows from Lemma We next show that 04 = —log2. That
Zn,g(M,q) > —log2 + L(logC + Blogn) for n +1 > M and n > n, is immediate from the defini-
tion, 5o z,, 4(M,q) > —log 2. For the upper bound, the proof is similar to, though simpler than, that of
Lemma if we consider v € G(q) as defined there, then for z € [v], 175}, ¢(z) < —log 2 and since
the finite behaviour contributed by any prefixes and suffixes disappears in the limit, d4 .. = —log2

and 50 0y 00 + hoo = 0.

We see here that Z(¢,7) = C/n” so SPR fails. Hence Theorem is sharp in the sense that we can
satisfy (2.2.3), but if 4~ + hoo < 0 does not hold then (2.2.3) may fail. Note also that if ¢ was null
recurrent or, as in case (c) above, transient, we would also fail these conditions in a more dramatic

way.

2.6.3 Relation of bouquets to inducing schemes and general shifts

At the beginning of this section we described interval maps (7, f) with an inducing scheme (Y, 7, F =
f7) such that Y is a countably infinite union of disjoint subsets | J, ¥; and 7|y, is constant. If we have
F(Y;) =Y for all 4, which is the case for the examples mentioned above, then we identify Y with the
root r. Suppose a(n) = #{Y; CY : 7|y, = n}, then for each such Y; in the set we associate a loop

n,ij

r v sy s oy e for iy = 1, a(n).

We can project a sequence (zg,z1,...) € X to x € I by a projection 7 as follows. Suppose that

x €Y has Ft(x) € [rv}*"] for all £ > 0 for some ny,4,. Then there will be a corresponding sequence

(zo,1,...) € ¥ given by (r, 07", 0", ... 032", r,01"",..). So let m(xg,x1,...) = x here, if
zo = v, for k > 1 then consider y € Y the projection of the sequence (r,v{"", ..., vz, 21,...)

and let (zq, x1,...) = f*(y).

If ¢ : I — [—o0, 0] is a potential, then this lifts to a potential on the bouquet shift ¢ o 7. The regularity
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of the lifted potential depends on the regularity of the original one and the choice of inducing scheme.
For some specific cases of multimodal maps where ¢ = —log|Df| and there is an inducing scheme
so that ¢ lifts to a potential of summable variation, see for example [BLS, Proposition 4.1] which
considers multimodal maps with different rates of growth of derivative along critical orbits. In this
case Collet-Eckmann maps yield symbolic models satisfying along with our other equivalent

properties, while non-Collet-Eckmann maps fail all of these.

We can extend a version of the coding used above to any topologically transitive CMS (¥, 0): we can
pick a 1-cylinder and take first returns to it and then use the induced system to recode the system via a
bouquet with the root being the 1-cylinder selected. Hence the bouquet setup captures the behaviour

of any topologically transitive CMS.



Chapter 3

Almost sure limit theorems for cover

times

In this section we put the thermodynamics of CMS aside and focus on an almost sure convergence
problem for interval maps. Let X be a compact interval and for some closed subset A C X, suppose
f A — A is topologically transitive. By transitivity, for every point z in the repeller (see for
definition) that is not a preimage of some periodic point, its orbit in the long-term will saturate the
repeller. It is then sensible to ask the following question: given r > 0 small, what is the time/number
of iterates needed for the orbit of z under f reaching a resolution of r? In other words, we care about

the following quantity, to which we refer to as the r-cover time of «:
7r(z) = 7(z) :==inf {k > 0: forally € A, there exists j < ks.t. d (f/(z),y) <r}.

The name cover comes from the trivial observation that {B (f/(z),r) };:(g ) forms an r-cover of A.
Cover times were also studied for strong Markov processes, in such context they are interpreted as the
minimum time for a process {X,, },, to have visited all of a finite subset in the state space. We start our
discussion with a quick review on results for expected cover times for Brownian motions and interval

maps, then move on to the almost sure convergence rate of asymptotic cover times.

3.1 Expected cover times
An important quantitative result for cover times in stochastic process context was obtained by Mat-

thews [Mat] for Brownian motion on ¢ := {surface of the unit sphere S¢ C R%}. In particular, the

51
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author considered two separable quantities: C;(r,d) the time taken for the geodesic balls of radius
r, which the author referred to as ‘caps’, around the points of the Brownian motion to cover S%, and
Cy(r, d) similarly defined but considering also the reflection of the points about the origin, hence there
is E[C4(r, d)] = 2E[C3(r, d)]. For p the scale parameter of Brownian motion, and all d > 4, the expect-
ations of C(r,d) and Cs(r, d) are sharp estimates were given, for the special case d = 3,

4 fming HO DL

: E[Cy(r,d)]
<1
P r—0 loglog(r—1) ep

16
< — 0 <,
r—0  loglog(r—1) P

and the upper and lower bounds are halved for E[Cs(r, d)].

The proof consists of two steps: (1) calculating the expected time E[r¢.] for a strongly Markov process
to visit all components in a finite collection C of subsets in the state space, (2) and approximate the
number of balls of diameter r needed to cover X%, In particular, the first part involves what the author
refers to as an ‘auxiliary randomisation’, which assigns a product measure that returns the probability
of ‘first hitting’ each set in such a collection C in a particular order, and using conditional expectation
to calculate E[rc]. The expected cover time for C? turns out only to depend on the logarithmic order

of #C9, hence the approximation in step (2) need not to be too accurate.

Such a method is transferable to the cover time problem for interval maps on their repellers, and
chaos games on the attractors of iterated function systems (IFS). An iterated function system is a
collection F = { f;},.,of contraction maps on a subset of R , and it is known that there always exists
a unique non-empty compact set K such that K = (J,.; fi(K). Then the chaos game, a process first
described by [Barll, refers to applying maps from {f;}icz to an = € K repeatedly on the left: let
w = (ig,41,...) € I, the orbit of x is defined by O(x) = {fi, , o---© fi,(2)}, . this allows us to
talk about cover times.

In these settings, although the process is no longer a Brownian motion hence not necessarily inde-
pendent at each iteration, the lack of independence can be resolved by fast mixing properties. For
cover times in chaos games that has the v-mixing property, the upper and lower bounds were given for
expected cover times in [BJK, Theorem 2.2]. For interval dynamics, [JT] considered cover times for
the same class of maps as in [BDT]] whose transfer operators have nice properties. Their main results

showed that there exists ¢ > 0 such that for all » small,

1 —logr

A R TAES)

(3.1.1)

where . is an f-invariant measure and M), (r) = minge gupp(u) p (B(z,7)). M, (r) is also used to define

the following quantities.
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Definition 3.1.1. The upper and lower Minkowski dimensions of . are defined respectively by

- log M, log M
dimps(p) := limsup L”(T), dim,, () := liminf M, (3.1.2)
r—0 log r r—0 logr

and write dim; (u) when they coincide.

These dimension-like quantities reflect the decay rate of the minimal y-measure ball at scale r, and they
are closely related to the box-counting dimension of the ambient space (see [FFK] for more details).
Alternatively, in the language of L? dimensions for measures, Minkowski dimensions are the L~—>°
dimensions. We are interested in the Minkowski dimensions of u because they govern the asymptotic
behaviour of hitting times associated to the balls which are most ‘unlikely’ to be visited at small scales.
If dimy, (1) < oo, then can be re-written in terms of dimy, (u); if © is Ahlfors regular, i.e., there
exists s; > 0 such that for all » > 0 and = € supp(u), p1(B(z,)) is comparable to r*/, so can

be rewritten in terms of sy.

3.2 Results on almost sure cover times
In addition to expectational results on 7,., an almost sure asymptotic limit law was proved in [BJK],
which established a connection between 7, and dim,,(x). Similar statements can be obtained as well

for piecewise expanding Markov maps described below.

Let A be a finite or countable index set, and P = {P,}q.c4 a collection of subintervals in [0, 1] with
disjoint interiors in [0,1]. We say f : Use 4P — [0,1] is a Markov map if for any a € A, f([a]) is a
union of elements in P = {P,},c4 and f, := f|p, is injective, continuous and monotone. The map f
is further said to be piecewise expanding if there is a uniform constant v > 1 such that for all a € A,

|Dfal > 7.

The repeller of f, denoted by A, is the collection of points with all their forward iterates contained in

P, namely

A= {x eX:fMz)e | P.forallk > o} : (3.2.1)
a€A

We study the dynamics of f : A — A, together with an ergodic invariant measure u supported on A.
There is a shift system associated to f: let M be an A x .4 matrix such that M,, = 1 if and only if
f(P,) N P, # (), and 0 otherwise. The map f is topologically transitive if for all a,b € A, there exists k

such that M* > 0. Let ¥ denote the space of all infinite allowable words, i.e.,

Y= {z=(z0,21,...) €AV : My, 4, , =1,Vk>0}.
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Define the projection map 7 : ¥ — A by

r =7 (xg,21,...) ifand only if 2 € ﬂf*iPxi.
i=0

The dynamics on X is the left shift o : ¥ — X given by o(zg, z1,...,) = (1, x2,...), and = defines a
semi-conjugacy f om = w o 0. The corresponding symbolic measure i of u exists due to the Markov
structure of f and is given by u = w.f, i.e., for all Borel-measurable sets B € B([0,1]), u(B) =
n (77_13).

For two partitions P and Q, we define Pv Q := {PNQ: P e P and Q € Q}. Set P" := \/?:_O1 fiPp,
then each P € P™ corresponds to an n-cylinder in X: for any w € ¥* of length n,

n—1

mlwo, Wy, W] = ﬂ f_ijj =: P,.
We say the measure 1 is exponentially ¢-mixing if fi is ¢-mixing (see Definition[1.1.5) with
Y(n) < Cre™ " (3.2.2)
for some Cy,p > 0.

Given the setting above, the first theorem is presented below, similar to [BJKI.

Theorem 3.2.1. Let (f, 1) be a finite measure preserving system on a compact interval in R. Assume that
f is topologically transitive, Markov and piecewise expanding. If dimy;(u) < oo, then for u-a.e. x in the
repeller,

log 7 _ log 7
lim sup log 7+ (z) > dimps (), liminf log 7+ ()

> dim,, ().
r—o0 —logr r—0 —logr = dimy (1)

If u is exponentially -mixing , then for u-almost every x € A, the inequalities above are improved to

1 —_— 1
lim sup m = dimps(p), liminf m

= dim .
r—0 —logr r—0 —logr w (1)

As in [BJK, Theorem 1.1] and [JT, Theorem 2.2], this theorem is particularly useful when mM(u)
and dim,, (x) are finite (and preferably non-zero), which is true more often than not for finite IFS and

finitely branched interval maps.

Remark 3.2.2. Systems with dimy;(p), or at least dimy; (1) < oo, are fairly common. For example, if
w is doubling, i.e., there exists constant D > 0 such that for all x € supp(p) and r > 0, Du(B(x,r)) >
p(B(z,2r)) > 0, then dim,; (1) < .

Proof. For each n € N let x,, € supp(p) be such that yu(B(z,,27")) = M,(2~"), then by the doubling
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property,
M, (27") =p (B (zn,27")) > D' (B (2,,27""")) > DM, (27") = D' (B(zn—127"1)),

and iterating this one gets M, (2™") > D~""!M,(1/2), in other words

log M, (27") < —(n—1)log D +log M, (1/2)
—nlog2 —nlog2

As for all r > 0, there is unique n € N such that 27" < r < 27"+ and lsggz%;il =1,

—n
lim sup M = lim sup log My (2 ) < log D < 0. O
r—0 logr 00 —nlog?2 log 2

However, Minkowski dimensions are not always finite due to non-doubling behaviours, or generally
more extreme decay of M,(r), especially when the associated symbolic shift is a countable Markov
shift as discussed in Chapter |2| In this case the natural choice of the exponentially mixing measure
is either not doubling or the ball of minimum measure decays stretched-exponentially as » — 0 (see

Example below). Therefore a new notion of Minkowski dimension needs to be introduced.

Definition 3.2.3. Define the upper and lower stretched Minkowski dimensions by

— log | log M, log | log M
dim,, () := fin sup Og'_oig:(r), dim}, () := lim inf Og_oi)g;‘w~

Those quantities should be of independent interest. Our second theorem below deals with almost sure
cover times for systems in which A/, (r) decays at stretched-exponential rates.

Theorem 3.2.4. Let (f, u) be a measure preserving system on [0, 1]. Suppose f is topologically transitive,

Markov and piecewise expanding. If dim; (1) = oo, but 0 < dim’, (1), dimy, (1) < oo, then for y-almost

every x € A,
— loglog 7, () > dim?, (1), lims loglog 7,-(x) - T () (3.2.3)
iminf —————= imsup —————= 2.
r—0 —logr = SHEM), r~>0p _IOgr - arit
If (f, p) is exponentially 1-mixing, then for u-almost every x € A,
.. .loglog T (x) s ) loglog 7-(z)  =+—s
hgl_}lélf T logr = dim;, (), hITnjélp ~logr = dim,, (). (3.2.4)

We first discuss some applications of our main theorem.

3.3 Examples
Theorem [3.2.1and Theorem are applicable to the following systems.

Example 3.3.1. Finitely branched Gibbs-Markov maps: let f be a topologically transitive piecewise
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expanding Markov map with A finite. Let h := ;{42 then f is a Gibbs-Markov map if

* (Distortion) log h o 7|, is Lipschitz with respect to the symbolic metric d, for all a € A.

* (Big image property) There exists By > such that Leb (f(w[a])) > By for all a € A.

The corresponding symbolic measure i is a Gibbs measure as in Definition For maps of this
kind, the Gibbs measure x (which is also the unique equilibrium measure for the potential — log |D f/)

is doubling (cf [Dol, Appendix 3]) so by Remark dimy,(p) exists and is finite, then by The-
orem[3.2.7]

for pu-a.e. z in the repeller of f.

In the next example, when » — 0 at polynomial rate, M, (r) decays exponentially, hence dim/(u) is

infinite so the stretched Minkowski dimensions are needed for computing a finite limit.

Example 3.3.2. Similar to [JT, Example 7.4], consider the following class of infinitely full-branched
maps: pick > 1 and set ¢ = ((r) = 3. oy e Letag =0, a; = Y7, = and define f by

VneN, f(z) =en”(x —an—1) for z € [ap_1,a,) =: P,.
Then f is an infinitely full-branched affine map, and we can associate this map with a full-shift system
on N: z = 7(ig,i1,...) if forall j > 1, f/(z) € P,,.

Let w > 1 and construct /i the finite Bernoulli measure by

n—1
ﬂ([i(h s >Z’n71]) = H w_lja
j=0
so the push-forward measure y = 7, i has u(P,) = w™".

Proposition 3.3.1. For (f, ;1) defined in Example dimyy () = oo, but dimj, () = L5.

Proof. For each r > 0, as the measure of P; decays exponentially while their diameter only decays

polynomially, the r-ball of minimum measure is found near 1. In particular, along the sequence r,, =

= jond TR W, the ball that realises M,,(r,,) is contained in J;Z,, P;, hence
n
w < M, (ry) < I
Therefore
dimyy () > lim sup _nlogw _ _

n— oo (K/ - 1) IOg’I’L
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whereas for all n,

log(1—1/w)
logn + log <logw + B ) < log | log M,,(ry)| < logn + log log w
(k —1)logn +log(2¢(k — 1)) — —logr, = (k= 1)logn +log(2¢c(k — 1))
As for all » > 0, there is unique n € N such that r,,; 1 < r < r, while lim,, I‘Eg;:l = 1, we can
conclude with dimj, () = -15. O

As in [JT, Example 7.4] it is very difficult for the system to cover small neighbourhoods of 1 so The-
orem says limsup, logr(2) > dimy, (1) = oo, but since ji is Bernoulli hence v-mixing, The-

—logr
orem implies
loglog 7, 1
lim —82987 (z) = for u-a.e. x.
r—0 —logr k—1

3.4 Proof of Theorem |3.2.4

The proofs in this section are adapted from those of [BJK, Proposition 3.1, 3.2]. We will only demon-

strate the proofs for Theorem [3.2.4} i.e., the asymptotics are determined by stretched Minkowski di-
mensions; the proofs for Theorem are obtained verbatim by replacing all stretched exponential
+n®

sequences in the proofs below by some exponential sequence, e.g. for a given constant s € R, e="" will

be replaced by 2+,

Remark 3.4.1. Assuming the conditions of Theorem we will prove that the statements hold along
a subsequence 1, = n~! that has: for each r > 0 there is a unique n € N with r,,,1 < r < r,, while
limy, 00 1?3;7,;“ = 1 (if dimp () or dim,,(u) are finite we simply choose r,, = 27" instead). Since

log () is increasing as r — 0,

. loglog 7, (x) . loglog 7,-(x)
limsup ————"* = limsup —————=.
n—o00 - log Tn r—0 - log r

The same argument applies similarly to the lim inf’s.

Proof of the inequalities ([3.2.4))
Assuming the inequalities in (3.2.3)), we first prove the set of inequalities ([3.2.4) which requires the

exponentially -mixing condition.

Proposition 3.4.2. Assume that (f,u) is exponentially v-mixing, and the upper stretched Minkowski

dimension of p, dimjw(u), is finite. Then for p-almost every x € A,

log log 7,
Jimn sup 281987 (2)

< dim), ().
msu “logr = im, (1)
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Proof. Let e > 0, and for simplicity denote @ := dim ().

For any finite k-word i = xq, ...,z 1 € Xk, leti™ = xg,...,zi_2, L.e., i dropping the last letter. Recall

that for each i € ¥*, P, = «[i], and we define
W, :={ieX": diam(P;) < r < diam(P;-)}.

By expansion, for each n € N, the lengths of the words in W,,-1 are bounded from above, hence we
can define

logn
L(n) := Tog

Given y € [0, 1] and r > 0 such that B(y,r) C supp(u), define the corresponding symbolic balls by

+ 1> max{Ji|:i € W,-1}.

B(y,r) == {[i] :i€ W,,, BN B(y,r) # 0}.

If for some = € P, [i] € B(y,r), then d(z,y) < 7 + diam(P) < 2r. In other words, for all y and all
r >0,

B(y,r) C ﬂB(y,r) C B(y,2r). (3.4.1)
Let Q,, be a cover of A with balls of radius r,, = 1/2n with disjoint interior, denote the collection of
their centres by ), and #Q,, = #), < n. Let 7(Q,, z) be the minimum time for the orbit of x to

have visited each element of Q,, at least once,
7(Qn,z) :=min{k € N: forall Q € Q,, thereexists 0 < j < k: fi(z) € Q}.

Then 71/, (2) < 7(Qn, x) for all n and all = since for all y € A, there is Q € Q,, and j < 7(Q,, ) such
that f/(z) € Q and y € Q hence d(f7(z),y) < 1/n. Let ¢ > 0 be an arbitrary number and for each
keN,set L'(k) = [L(k)+ % (k°*¢ + log C1)] where C}, p were given in Deﬁnitionand [t] takes
the least integer no smaller than ¢. We have

w (Jc D Tyn(T) > 67"E+EL’(4n)) <u (Jc 2 7(Qp,y ) > enmeL’(zln))

— (w2 3y € Vs (@) & Bly,1/2n), v < L/ (4n))

<u (3: Ty € Voo fIE UM (@) ¢ By, 1/2n), V) < e”ws) (3.4.2)

a+te

€ n("+5

—ul U e"’m (f—jL’(4n)B(y71/2n))c sy em (f_jL/(4n)B(y7l/2n))

YEYVn j=1 YEVn Jj=1

C

A cylinder [i] in B(y, 1/4n) has depth at most L(4n), then by our choice of L'(4n) and the exponentially
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-mixing property of fi,
w(B(y,1/4n) N =2 U B(y,1/4n)) < (1 4 exp(—((4n)™*) + log C1 ) u(B(y, 1/4n)).

note o c -
Similar calculations holds for 7 (n;l (f—]L (47L)B(y7 1/271)) ) since the compliment of B(y7 1/4n)

can be written as a countable union of cylinders of depths no greater then L(4n).

By (3.4.1), for all z and all r > 0,

Z 1 n (f jL' (4n)B(y 1/2n> Z ‘ (O’ jL’ (4n (y 1/4TL)>
YEVn Jj=1 EVn j=1
< (1o (2 (g a)))e (e () (3.4
P el 4n
e (o))
YEVn

By definition of @, for all n large such that £ logn > (@ + £) log4, we have

log <—log M, <41n)> < (@+¢/4)(log4n) < (@ +¢/2)logn.

So for all y € supp(i) and all » large enough,

c/2

1 ate/2 e
B — >e " > —.
(o (o)) 2 2

As for all w € R and all large %, (1 + %)’“ ~ e, combining (3.4.2) and (3.4.3)), for some uniform

constant Cy > 0,

e e
e a+e € ate €
H (x cTip(T) > e i L/(4n)> < (1 +e ) Z (1 et /2>
YEYVk+1

note

ne/

'I‘LH+E 2 €
ate € e e
§(1+e_"+) ”(1—nu+a> SCzeXP(logn—e"/z).
(&

The last term is clearly summable over n, then by Borel Cantelli, for all n large enough 7/, (7) <
(1+€

L'(4n). Since log L' (4n) ~ (a + €) logn < n®*¢, we have for u—a.e. x € A,

nE+a
. log log 71 /n () _ log log (e L/(4n))
limsup ——————= < limsup

<a-+e.

By Remark this upper bound for lim sup holds for all sequences decreasing to 0, and as € > 0 was
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arbitrary, we can conclude that for u-a.e. x € A,

log log 7.-() loglog 71 /p, <z
—_— ——— " <a

lim sup = lim sup L

r—0 —logr 00 logn
Proposition 3.4.3. Suppose (f, i) is exponentially 1)-mixing and the lower stretched Minkowski dimen-
sion of p, dim’, (u), is finite, then for u-a.e. x € A,

loglog 7-(x)

lim inf < dimjy, ().

r—0 —logr
Proof. Again for simplicity, denote o := dimj,(u). Let ¢ > 0, then by definition of liminf there is a
subsequence n; — oo such that for all &,

log(—log My, (1/nx))
log ny,

<a+te

Then repeating the proof of Proposition by replacing n by n, everywhere, one gets that for

p—almost every x,
.. loglog T /p, ()
liminf —————~=

<a-+te.
k—o00 log ny,

Again send ¢ — 0, and use the fact that liminf over the entire sequence is no greater than the liminf

along any subsequence, the proposition is proved. O

Proof of the inequalities (3.2.3)

Next, we show the almost sure lower bounds which do not require the -mixing property of s.

Proposition 3.4.4. For p-almost every x € A,

.. loglogT(x) s
—_— > .
h?ﬂglf logr dim),, ()

Proof. We continue to use the notation o = dim},(u). Let ¢ > 0 be arbitrary, and by definition of « for

e

all large n there exists y,, € supp(u) such that y(B(y,,1/n)) < e ™" . Let

T(z,y,r):=inf{j >0: f/(x) € B(y,r)},
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so for all n € Nand all z, 7y, (z) > T(z, yn, 1/n). Then by invariance,

(s mm@) < e n?) < p (2 T(,ya,1/n) < e /n?)
en® /n2—1

:u(I:HOSJ<6"M/nz:fj(ﬂl‘)GB(?/ml/”))S Jz:(:) p(z: f/(x) € Blyn,1/n))

a—e
e /n?—1

iy 1 S |
_ /~L<fJB(yn,)>< P
n n n

=0

which is summable. By Borel-Cantelli, since 2log n < n®~¢, for u-almost every x

log1 "
lim inf 08 08 T1/nl¥) (z)

>a—e.
n—o0 logn

As e > 0 is arbitrarily small, the proposition is proved. O

In a similar way to Proposition and Proposition

Proposition 3.4.5. For u-almost every x € A,

S

> dim,, ().

. loglog 7,.(z)
limsup ———>——+=
r—0  —logr

Proof. Let ¢ > 0, then by definition of limsup there exists a subsequence {nj}r — oo such that for all

k,
loglog (=M,,(1/n4))
log ny,

> a—c¢.

Then repeating the proof of Proposition along {ny }, one gets that for u-almost every x:

loglog 1 /p, (T
lim sup (2818 /e (B) o o
k— 00 log ny,
As ¢ was arbitrary,
log log 7, loglog 71 /p,, (x
lim sup 08087 \T) (=) > limsup 0808 T/mi\T) (@) >a
r—0 —logr k—s00 log ny
for u-a.e. z € A. O

3.5 A non-mixing example: irrational rotations

The proof of Proposition requires an exponentially ¢-mixing rate which is rather strong (see
Definition [1.1.5). It is natural to ask if the same asymptotic growth in Theorem [3.2.4] remains valid
under different mixing conditions, e.g. exponentially ¢-mixing and a-mixing, or even polynomial -
mixing. Although these questions are unresolved, in this section we will show in Theorem that

the lim sup and lim inf of the asymptotic growth rate can differ if the system is not mixing.
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Let # € (0,1) be an irrational number and define the rotation map 7' = Ty : [0,1) — [0,1), T'(z) =
z + 60 (mod 1). Denote the one-dimensional Lebesgue measure on [0, 1) by u, then (T, i) is an ergodic

probability preserving system with dim;(u) = 1.

Definition 3.5.1. For a given irrational number 6, the type of Ty is given by the following number
n =mn(0) := sup {§ : lirr_1>inf nt||nf| = 0} ,
where for every r € R, ||r|| = min,ez |r — n|.

The fact that (T}, ) is non-mixing for all irrational § € (0, 1) is standard, which can be deduced by
computing the following:

let [a,b) C [0,1), and set F' := 1|, ;). For each 6 there exists nj, — oo such that |[n40| — 0, hence
/FOTe"’“ - Fdp = [[b—a| = [[nif]]] = [b - af

as k — oo, hence lim,,_, [ F o T)" - Fdu # ([ Fdu)?, hence y is non-mixing.
Remark 3.5.2. (See [Khi]) For every 6 € (0, 1) irrational, n(6) > 1 and n(0) = 1 almost everywhere, but

for all real numbers v € (1, 00|, there exist irrational numbers with 1(0) = v. The Liouville numbers have

n(0) = oc.

For any irrational number 6 € (0, 1) there is a unique infinite continued fraction expansion

1
0 =[ay,as,...]:= prpr——
as+...

where a; > 1 for all i > 1. Set pg = 0 and ¢ = 1, and for each ¢ > 1, choose p;,q; € N coprime such

that

L. [a1 a;] = -
G ) s Ug a1+ i

a

i

Definition 3.5.3. The term a; is called the i-th partial quotient and p;/q; the i-th convergent. In partic-
ular, (see [Khil)

1
n(6) = lim sup 2B dnt1
n—soo  l0gqn

The almost sure cover time for an irrational rotation is given by the theorem below.

Theorem 3.5.4. For any irrational rotation Ty, for u-a.e. x,

liminf 287 _ dimy (1) = 1 < 7(0) = lim sup 257 (3.5.1)

r—0 — 10g r r—0 - IOg T
Remark 3.5.5. In fact, by the nature of rotation and cover time, ([3.5.1)) all u-almost-every statements in

this section can be upgraded to for every x € [0,1).
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By Remark|3.5.2] there exist irrational rotations such that the asymptotic cover time does not converge.
The proof of this theorem relies on the algebraic properties of n(6). For simplicity, we fix § and write 7

from now on.

Lemma 3.5.6. [KS| Fact 1, Lemma 7]

(@) qiv2 = ait2qiv1 + ¢ and pir2 = a;y2piv1 + pi-

(®) 1/(2gi+1) < 1/(qi+1 + @) < lqif|| < 1/qiy1 fori > 1.

(c) If 0 < j < giy1, then ||50] > ||¢0].

(d) For each ¢ > 0, there exists a uniform C. > 0 such that for all j € N, j77¢||50|| > C..

We use ideas and results from [KS| Proposition 6, Proposition 10] to prove the following propositions.

Proposition 3.5.7. For u-a.e. z,
log 7,-(x) S

lim sup (3.5.2)

rs0  —logr

Proof. First it is easy to see that for all » > 0 and all z,y € [0, 1), by the nature of rotation, 7,.(z) =

log 7 (z)

; is T invariant therefore
—logr

7-(y). In particular, 7,.(z) = 7,.(T'z), hence the function z — limsup,._,,

constant p-a.e. by ergodicity of u.

By [KS|, Proposition 10], for almost every x,y

log Wpg,
limsupiOg B(y’r)(x)

>
0 —logr =

where Wg(z) := inf{n > 1: Tz € E} denotes the waiting time of = before visiting E. Hence there
exists a set of strictly positive measure consisting of points that satisfy

log Wiy »
hmsupw thsupw

21,
r—0  —logr r—0 —logr
log 7-(x)

since for all y € [0,1), 7(z) = Wp(y,r)(x). As limsup, o 2727

is p-a.e. constant, the inequality

above holds for u-a.e. x hence the proposition is proved. O

Proposition 3.5.8. For u-a.e. x,
lim sup w <
rs0  —logr
Proof. Let Q, :={[27"4,27"(j+1)):j=0,...,2" — 1} and set 7 (Q,, z) as the minimum time for
to have visited each element of Q,,. Again, we have 75-n+1(x) < 7(Q,, ) for all z. By Lemma
(a) and (o), {||¢:f||}: is a decreasing sequence, and for each n € N there exists a minimal j such that

g0l < 27" < [|gj—10||, write j = jy.
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By [KS, Proposition 6] for all n, there is 1 (Wg o-n) > @5, + ¢;,,—1) = 0. Notice that for all a,b € [0, 1),
1{Wia,ate) () = k} = p{{z : Wig)(2) = k} + a} = p{Wigp)(x) = k}, (3.5.3)
as u = Leb is translation invariant. Then by
pA7(Qn, @) > qj, + a1} = pfz: VQ € Qn: Wolz) > ¢, +¢j, 1}

=ulz: U Wo@) >aqa+a.3] < D nWo>q5,1+45,)

QEQ, QeQn

21 21
= Z e (Wia=njo-n(js1)) > G + Go—1) = Z 1 (Wio,2-n) > a5, + @5, —1) = 0.

=0 =0

Hence by Borel-Cantelli, for all n large enough, 75-n+1(x) < (g;, + ¢;,,—1) for p-a.e z € [0,1).

Let £ > 0, and by Lemma[3.5.6|(b) and (d) there exists C. such that

| < (n+e¢)logg;, +log2—logCs,

log (g¢;,, + qj,—1) <log(2g;,) < log

llg;,.0

Again by Lemma and our choice of j,, for u-a.e. x and all n large enough,

log To—nt1(z) < log(qj, + qj,—1) S (n+€)logg;, < —(n+e)loglgj,—10] < (74 €)nlog2.

log 7, —n ()

where a S b means a < b up to a uniform constant. Hence limsup,, ., =5

< n+ ¢ for p-almost
every x. Again, since for each r < 0 there is a unique n € N for which 27" < r < 27"*! we can apply

the subsequence trick again. As € > 0 is arbitrarily small, the proposition is proved. O

Proposition 3.5.9. For p-almost every z € [0,1),

lim inf 287 (®) _
r—0 —logr

Proof. Let € > 0 and using the same arguments in the last proof, i.e., cover time is greater than the

hitting time of the ball of smallest measure at scale r, along the sequence 7, = 2-(**1) one gets that

forall [a — rp,a+1ry,) C [0,1),

Zu (Tr" (z) < 2”(1—6)) < Z M (x . W[a_gfrrt—17a+2—rrL—1)(Z‘) < 2n(1—s)>

n>1 n>1

2n(1—5)

= Z Z H (Tﬁk[a' —27" N a+ 27"71)) = Z gn(l—g)g—n _ Z 9=« oo,

n>1 k=0 n>1 n>1
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For each r there is a unique n such that r,, < r < r,,_; and lim,, 1012‘?7“11 = 1, so by Borel-Cantelli,
log 7. L] -n
lim inf M = lim inf M >1—¢, (3.5.4)
r—0 —logr n—o00 nlog?2

and as e is arbitrarily small, the lower bound for the lim inf is proved.

For the upper bound of liminf, recall that 7 (Q,,,z) > 75-«(z), we can repeat the proof of Proposi-
tion|3.5.8} apart from that this time we choose {27"}, according to {g; };en: for each i, choose n; € N

to be the smallest number such that
gi+10] <27 < |q:0].
Then, as in the proof of Proposition

1 (7 (Qn,y @) > qigr + @) < Z w(Wq > qit1+¢;) = 0.
QEQn,
Again by Lemma (b), gi+1+0; < 2¢i+1 < oy < 2" by our choice of n;, 50 lim; o % <
1, therefore for p-a.e. z,

T(Qniax) <1

log 7. 1 —n; L]
lim inf m < liminf M < liminf o8
r—0 —logr iwoo  ny;log2 i—$00 n; log 2

Combining this with (3.5.4) lim inf, o log7r(2) _ 1 for 1 almost every z. O

—logr

Theorem is obtained by combining the three propositions above, and we have therefore shown
that for irrational rotations, which have no mixing properties, the asymptotic limit may not converge

to the Minkowski dimension dim(u).

3.6 Cover time for flows
In this section we prove an analogous almost sure limit regarding cover times for the same class of

flows that was discussed in [RT), §4].

Let { f;}; be a flow on a metric space (X, d) preserving an ergodic probability measure v, i.e., v ( ft_lA) =
v(A) for every t > 0 and A measurable. Recall that a point « € X is called non-wandering if for every
open neighbourhood U > x and all T' > 0, there exists |t| > T such that f,(U) N U # . Let Q denote

the non-wandering set and define the cover time of x at scale r by

Tr(z) :=inf{T >0:VyeQ, Jt<T: d(fe(z),y) <r}.

We will assume the existence of a Poincaré section Y ¢ X with R := f Rydv < oo, where Ry (z)
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denotes the first hitting time to Y, i.e., Ry (z) := inf{t > 0 : f;(z) € Y}. Define the Poincaré map by
(Y, F,u) where F' = fp, and let u be the induced measure on Y. Additionally, assume the following

conditions:

(H1) dimp,(u) exists and is finite for (F, p),

(H2) (Y, F, u) is Gibbs-Markov so Theoremis applicable for uy-almost every y € Y.

(H3) {f:}: has bounded speed: there exists K > 0 such that forall s € Rand ¢ > 0, d(fs(z), fs+:(z)) <
Kt.

(H4) {fi}: is topologically transitive and there exists 77 > 0 such that

U ry)=x (3.6.1)

0<t<Ty

(H5) There exists
Cy := sup {diam(f;(/))/diam([) : I a connected component in Y,0 <t < T}} € (0,00).

Remark 3.6.1. The last condition is satisfied when|(H3)|holds and the flow is, for example, Lipschitz, i.e.,

there exists L > 0 such that for all x,y € X,

d(fe(w), fe(y)) < L'd(z,y).

Theorem 3.6.2. Let (f;,v) be a measure preserving flow satisfying conditions ((HI){{(H5)| Then for v-

almost every x € €,
log 7,-()

. > & B 6.
ll?l}(I)lf I dim,,(v) — 1. (3.6.2)
Furthermore, if dim,(v) = dimp, (u) + 1,
) log ()  —— -
limsup ——= < dimp,(u) = dimp(v) — 1 v-a.e. (3.6.3)
r—0 - 1Og r

Proof of (3.6.2). This proof is analogous to those of Proposition and [RT, Theorem 4.1].
Fix some y € Q2 and r > 0 and consider the random variable
T
Spp() = / Loy (ful))dt.
0
Observe that by the bounded speed property, for all T' > r/K,
{x:30 <t <Ts.t d(fi(z),y)) <r} C{Soror(z) >r/K},
since if d(fs(z),y) < r for some s, then for all ¢t < r/K, d(fi1+s(x),y) < 2r. Also set

T(x,y,r):=1inf{t > 0: fi(x) € B(y,r)},
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and similarly for all » > 0 and all z, z, 7-(z) > T'(z,y, 7).

Let ¢ > 0 be arbitrary and by definition of o for all large n € N there exists y, € € such that
v(B(y,,2™")) < 2-"(@=¢), By Markov’s inequality, for some 7,, > 0 to be decided later,

V(0 Ty (@) < Ta) < v (2 Ty 2") < To) = v (2:30 <t < To s i) € By, 2™))

2Tn
<v(@: Saygni(z) > 27" /K) < K2" / / Ly 2onsty (fol@))di(z)dt
0

< K2 u(B(yn_1,27 ")) < 4K T2~ (n-Dla—e=1),

Choosing 7,, = 2(»~1(e—==1) /2 the last term above is summable along n hence by Borel-Cantelli, for

v-almost every x
.. L logT(x) log T,
liminf ————=

=a—1—¢.
r—0 710g7‘ n—00 n10g2 a €

> lim inf

Since ¢ > 0 was arbitrarily small the lower bound is a — 1, and by Remark the proposition is
proved. O

Note that the proof of lower bound is independent of the existence or mixing properties of the Poincaré
map (Y, F, u). For upper bound, we first prove that the cover time of the Poincaré F' in Y is comparable

to the cover time of the flow.

Lemma 3.6.3. Define

7 (x) :==min{n € Ng: Vy € Y, 30 < j < n:d(y, Fiz) <r}.

T

There exists A = cif for Cy defined in |(H5)|such that 7,.(xz) < Ty + Z;i"o(l) Ry (Fix).

Proof. This is adapted from the proof of [JT, Lemma 6.4] and [RT, Theorem 2.1]. F' is by assumption
Gibbs-Markov so one can find P(r), a natural partition of Y using cylinder sets with respect to F, such
that for each P € P(r): (a) diam(P) < r/Cy, and (b) for all 0 < ¢t < T3, f;(P) is connected. Suppose
TTF/Cf (x) = k, then the orbit {z, F(z),..., F*(z)} must have visited every element of P. By for
each y € Q there is P € P(r) and 0 < s < T} such that y € f;(P) and hence there exists j < k such
that d (fs(Fi(z)),y) < Cy|P| < r. Thenset A = 1/C} the lemma is proved. O

Proof of (3.6.3). Now assume mﬂf(V) = dimp,(u) + 1. Let £ > 0 be arbitrary and define the sets
Usn :={z €Y :|R,(z) —nR| < &n,Vn> N},

where R, (z) = 27;01 Ry (F’(z)). By ergodicity, limy u(Ue n) = 1 so for N large, v(Ue y) > 0 hence
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by invariance,

EN
lim v (U f_t(U&N)) =1 (3.6.4)

N—oc0
t=0
Let € > 0 be arbitrary. By (3.6.4) one can pick N* such that for each v typical x € X there is some
t* < EN* such that fy«(z) € Y. By Theorem applied to the Poincaré map and Lemma [3.6.3 for
all sufficiently small » > 0 we have the following two inequalities,

log Tf,.(ft* x)

log (1,(z) — T1) < log ((R+ &)74,(fi- 1))
—log Ar .

< di
< dima(p) + ¢, —logr - —logr

Then as \, R are constants and ¢ is arbitrary, for v-almost every z,

. log 7-(x)
lim sup ————=
r—0  —logr

SdlmM(u) :mM(V)—l. ]
3.6.1 Example: suspension flow over topological Markov shifts

In this section, we give an example of a flow for which dimy,(v) = dim,(u) + 1 is satisfied, so (3.6.3)
is applicable.

Consider two-sided Markov subshift of finite type (3, o, ¢, u): A a finite alphabet and M = [M;;] ax4

transition matrix,
3= {x: (...,z_1,20,21,...) € A”: forall j € Z, rje Aand My, o, , = 1},

o the usual left shift, ¢ a Holder potential and y the unique Gibbs measure with respect to ¢. We

assume that dimy (u) € (0, 00). The natural symbolic metric on X is dg(z,y) = 27*"Y, where
z ANy =sup{k >0:z; =y, V|j| < k}. (3.6.5)

An n-cylinder in this setting is given by [z_(,_1),...,%0,...,%n—1] :={y € &, y; = x;,V|j| <n}, and
it is a well-known fact that balls in ¥ are precisely the cylinder sets. The left-shift map o is bi-Lipschitz

with Lipschitz constant L = 2. For more detailed description of the shift space, see [Bow, §1].

Let ¢ € L'(u) be a positive Lipschitz function, define the space
Y, ={(z,5) eEXR>p:0<s<opx)}/~

where (x, p(x)) ~ (c(x),0) for all z € I. The suspension flow ¥ over ¢ is the function which acts on
Y, by
y(z,s) = (Uk(x),’l})7

k—1

where k,v > 0 are determined by s +¢ =v + ;- ¢(07(x)). The invariant measure v for the flow ¥
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on Y, satisfies the following: for every g : ¥, — R continuous,

»(z)
/gdu = fl@du/z/o g(x, s)dsdu(z). (3.6.6)
b>

The standard metric on Y, is the Bowen-Walters distance dy (see for example [BW]). Define an altern-

ative metric d, on Y,: for all (z, s), (y,t) € Yo,

d(ZC,y) + |S - t|»
dr((z,5), (y, 1)) :==min < d(ox,y) + p(z) — s+, ¢ (3.6.7)
d(z,oy) + ¢(y) —t+s

the following proposition says d,. is comparable to the Bowen-Walters distance.

Proposition 3.6.4. [BS| Proposition 17] There exists ¢ = ¢, such that

¢ Hde((21,11), (22, 2)) < dy ((21,11), (2, 12)) < cdr((21,11), (22, 12)).

Then the Minkowski dimension of the flow-invariant measure v is given by the following proposition.
Proposition 3.6.5. For (1) the Gibbs measure with respect to ¢ on the two-sided subshift and v the flow

invariant measure, dimy;(v) = dimps (@) + 1.

Proof. The proof is based on the proof of [RT, Theorem 4.3] for correlation dimensions.

By Proposition forall r > 0,
(B(z,7/2¢) X (s —1/2¢,s +1/2¢))NY C By((x,s),r)
where By denotes the ball with respect to the metric dy, and set 3 = [, pdu. Then for all (z, s) € Y,

v(By ((x,5),7)) > v(B(x,r/2c) % (s - % s+ %) 7

logv(By ((,5),7)) _ 108 (B0 (B@,3)
log r - logr '

= : log mi B .
Hence dim,,(v) = lim sup,._, Ogmm(m‘s)es“fjg(j} v(By (@2)r) dimay(p) + 1.

For the lower bound, define
B; := B(z,cr) x (s —er,s+cr), Bs:= B(ox,cr) x [0,cr),

B3 = {(y,t) Yy e 3(071377207“)’ and p(y) —cer <t < go(y)} :



70 CHAPTER 3. ALMOST SURE LIMIT THEOREMS FOR COVER TIMES
Then as in the proof of [RT, Theorem 4.3], By ((x,s),r) C (B1 U By U B3) NY,,.
For all » > 0 and (z, s) € Y,, by (3.6.6), and as y is o, 0! invariant,

v(B1NYy,) =2cru(B(x,cr)) /@, v(Ba,Y,) < cru(B(z,cr))/e

v(B3NY,) < cru(o ' B(z,2cr)) /@ = cru(B(z, 2cr)) /P.

Therefore

v(By ((z,8),r) < = (3ru(B(z,cr)) + cru(B(z, 2cr))) ,

1
7
which is enough to conclude that dim,,(v) > dimy,;(x) + 1. Combining with the upper bound above

we obtain dim, (v) = dimy, (u) + 1. O

Thus by Theorem [3.6.2] for v the invariant measure of the suspension flow, for v-almost every (z,t) €
Y,

©>
. logT(x,t) .. L
}1_1;1(1) Tgfr = dlm]w(l/) —1= dlmM(M)7

where 4 is the Gibbs measure of the two-sided subshift (X, o, ¢). We will revisit suspension flows in

the next chapter for the shortest distance problem.



Chapter 4

Limit theorems for shortest distance

problems

In this chapter we show another set of almost sure asymptotic convergence for systems with a -
mixing measure. In fact, the natural candidate of such a measure is a Gibbs measure. We first deal
with symbolic dynamics. Consider a topological Markov shift (3, o) on an (at most) countably infinite
alphabet A with respect to a transition matrix M equipped with the natural symbolic metric d;. The

following quantity is of interest: for each = € %,
My(z) =max{k:30<i<j<n—1a,...,Tigp-1="2Cj, ..., Tjtk—1} (4.0.1)

M, (z) counts the maximum length of self-repeating subwords in the first n symbols, and in the longest
common substring matching problem we study the asymptotic growth of M,,(x) as n — oco. We will first
show that for topological Markov shifts with a Gibbs probability measure u, M,,(z)/logn converges p-

almost surely, and then apply similar techniques to show an analogous statement for interval dynamics.

To give a motivation of the problem, let us first consider a primitive model: coin tosses. One can
ask what is the probability of two identical coins coinciding for K consecutive times, and how large
can such K be. This was solved by Rényi [Ren] with a formula we now call an Erdés-Rényi law.
Another motivation for the substring matching problem comes from matching nucleotide sequences in
DNA which is a shift on four symbols; nucleotide sequences in DNA transcription correspond to the
amino acid chain which ultimately determines the structure of the protein produced by an organism’s

cells. The longer the matchings in substrings of DNA, the more similarities in the protein structure

71



72 CHAPTER 4. LIMIT THEOREMS FOR SHORTEST DISTANCE PROBLEMS

of the organism. Early results were established in the 80s by Arratia and Waterman’s work [AW].
They considered the length of the longest common substring among two i.i.d. sequences Xi, Xo, ...
and Y1,Ys, ... with different distributions taking letters in a finite alphabet. The longest matching

subsequence with and without shift are defined respectively by

M, (X,)Y):=sup{k: Xitm =Y,1p, forallm=1tokand1 <i,j <n-—k},

R, (X,Y):=sup{k: Xiym =Yiqmforallm=1tokand 1 <i<n—k},

and they satisfy an Erdés-Rényi law

IP(lim M, 2 )1, IP(lim M”2>1, (4.0.2)

n—00 logn - 10g 1/p n—oo fip

where p = P(X; = Y}) is the collision probability. The quantity —logIP(X; = Y7) is often called the
collision entropy or Rényi entropy. Analogous convergence results as (4.0.2)) are generalised to Markov

processes and matching with ‘scores’, see [DKZall, [DKZb].

The same problem can easily be translated to the topological shifts context: for (X, o) a countable or

finite Markov subshift with an invariant probability measure u, we study the p x u-a.e. growth of
My (z,y) ==sup{k:30<4,5<n—1:x;...,Tith—1 =Yjr--->Yjth—1}-

In [BLR], the authors show that for ;1 x p-almost every (x,y) € ¥ x 3,
. Mr(x y) 2
limsup —2" 4/~ =
s logn — Hy'
and if the measure p is a-mixing (see Definition [1.1.5) with exponential decay or «-mixing with
polynomial decay, then
M (z,y)

o n 2
liminf ——* > —, u X p-a.e.
n—00 ogn Ho

The quantities Ho, H, (see Deﬁnition are called the upper and lower Rényi entropies, which are
generalisations of the collision entropy log 1/p in (4.0.2)). This almost sure result is later generalised
for orbits generated by & u-typical points, for & € N\ {1} [BR21]], and random shift systems [GRS[]. The
question is, does an analogous almost sure convergence hold for single points orbit case, i.e., substitute

M, (z,y) by M, (z) as defined in (4.0.1).

The analogous problem for M, (x) is more difficult due to lack of independence and short returns,
the latter in symbolic context refers to the overlapping phenomena which will be discussed soon. For
subshifts of finite type, Collet et al in [CGR] applied first and second-moment analysis to the counting

random variable N(x,n,r,), which counts the number of matches of strings of length r,, among the
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first n iterates in z. They then showed that for H, the Rényi entropy of a Gibbs measure p, for alle > 0,

lim u(‘M"(x) 2 >€>:O.

n—+o0 logn Hy
That is, J\fo”g(i) converges to H% in probability for typical x. Then one may ask if this result can be im-

proved to almost sure convergence, or if the convergence remains valid when the alphabet is countably

infinite. The answer is given in Theorem 4.2.1

4.1 Rényi entropy
Let A be a countable or finite alphabet and ¥ a topological Markov subshift defined by the transition

matrix M = [M;;] ax 4. Recall that C,, denotes the set of n-cylinders in X.

Definition 4.1.1 (Rényi entropy). For each n € N, t > 0, define the quantities

Falt) = 37 wle).

ceCp

The upper and lower Rényi entropy (with respect to the natural partition given by the alphabet A) of the

system are defined respectively by

_ log F, (1 . logFy(1
Ho(p) := limsupL()7 Hy(p) := hmmf()gi()7

n—00 -n n—00 —-n
and write Ho(u) whenever these coincide. The generalised Rényi entropy function is

log F, (t
R, (t) — i inf 08T ().
n—-+oo —tn
In the information theory context, this is also called collision entropy, as it reflects the probability of two
i.i.d. random variables coinciding in value. Therefore, heuristically, the probability of a k-matching

ie, Xmij = Ypij; forj =1,... k, is roughly e~ *H2,

Rényi entropy does not always exist, especially when the alphabet is not ﬁnittﬂ For the finite alphabet
case, Haydn and Vaienti proved in [HV], Theorem 1] that R, (t) converges uniformly on compact
subsets of R for all weakly ¢-mixing invariant measures, in particular, if p is a Gibbs measure,
Hy(p) = R,u(1) = 2P(¢) — P(2¢) where P is the topological pressure defined in (1.2.I). We now show

the formula for Gibbs measures for countable Markov shifts.

Lemma 4.1.2. Let (X, 0, ¢) be a countable Markov shift with the|BIP property] ¢ a[locally Holder|potential

such that P(¢) < oo, and u the unique (up to multiplicative constants) Gibbs probability measure for ¢.

For infinite alphabet Markov chains, Rényi entropy is calculated in [GGI]].
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Then the Rényi entropy Ha () is finite and well defined for y and is explicitly given by

Ha(p) = 2P(¢) — P(2¢),

where P is the Gurevich pressure defined in (1.3.1).

Proof. We first show that H, and H, coincide for ;. Recall that for a real-valued potential ¢, vary,(¢) :=
sup{|¢(x) — @(y)| : @; = y;, foralli =1,...,k — 1}. As u is a Gibbs measure for the potential ¢, the
constant Bi(¢) := >, varg(¢) must be finite. Then if z,y € C for some C' € Cp, [Sn¢(x) — Sno(y)| <
By . By the Gibbs property (see (1.2.4)) for G the Gibbs constant and P = P(¢), for all n, k € N since
every allowable word of length n + k& must be some concatenation of a length n word and a length &

word,

Fue()= > w0’ <G Y exp(2(Surd(x) — (n+k)P))

CECrin CECpii
<6t S ow(sw2(S,00) - nP) ) exp (sup2Asiol) - 1)
CeC,,DeCy reC yeDb
CNo~"D#0D
<GB T exp(2(Sa6(2) — nP)) exp (2 (Skdy) — kP)) < GLe2P B, (1)Fy(1),
CceC,,DeCy,

where z,y in the sums are simply arbitrary points in the cylinders. So log F,,(1) is almost subadditive

hence lim,, o % = sup % exists. Therefore, to show that the limit is finite, it suffices to
find a subsequence converging to a finite constant, as every convergent subsequence of a convergent

sequence must converge to the same limit.

For some z € X, let Ci(x) denote the unique k-cylinder containing x. Suppose z is a periodic point

with period %, then for all n obviously 1u(Ch(2))? < Fur(1) = Ypec,, #(C)?. As Sprg(x) = nSpe(x),

2 (Sk¢p(x)/k — P) = liminf —210gG + 2 (Snkf(2) — nkP) < liminf 710g Frk(1) = liminf 710g Fn(l)

n—00 nk n— 00 n n—oo n

Since |Si¢(x)/k|, P(¢) are bounded, we get lim,, w is finite.

Combining the BIP property and the locally Holder property of ¢ with [Sarl, Lemma 4] one can show

that
lim sup 1 log Z exp (sup 25n¢(x)> < P(2¢)

n— o0 cec, zeC

which implies

1 1
lim sup - log Z w(C)? < limsup EGQe_MP(‘z’) Z exp (sup 25n¢(a:)) < P(2¢) — 2P(¢).

n—oo cec n—o0 cec, zeC



4.2. LONGEST SUBSTRING MATCHING OF ONE-POINT ORBIT 75

Also for each C € C,,, there is at most one x € C such that c"x = z, thus

5 HCP 262 O T exp (sup 25, (6(0) )

Cecn Cecn z€C

>G 2 2nP(@) Z exp (28,6(z)) = G 2e 2P E, (24, ).

o"z=x€C
CeCy, CCla]

This implies
lim inf log > p(C)? > P(2) — 2P(¢)
n—oo N H - ’
cecC,
Then putting the inequalities for lim sup and lim inf together,

lo 0)?
Hy = lim gZCecn He)

n—-+oo n

— 2P(¢) - P(29). O

Remark 4.1.3. It is also easy to see that Ho(v) < 2h(v) for all ergodic invariant probability measure v:

forall z and all n € N,

log Fu(1) _ 21og1(Ca(x))
—n - —n '
By the Shannon-McMillan-Breiman Theorem, the left hand side converges to 2h(v) for almost every x,
therefore lim sup,, log Fa(1) < h(v). So the Rényi entropy is finite whenever the measure-theoretic entropy

—-n

of v is finite.

4.2 Longest substring matching of one-point orbit

Here we present the main theorem for almost sure asymptotic growth of M, (x).

Theorem 4.2.1. Let (X, 0, ¢, ) be a topologically mixing countable (or finite) Markov subshift with the
BIP property, and ¢ a locally Holder (or Hélder) potential admitting a Gibbs measure p. Then for u-a.e.

T €Y,
M, 2
lim (z) =

= . 2.1
n—co logn  Ha(p) “21

We will use first and second moment estimation methods together with the Borel-Cantelli lemma to

prove separately that

n(f) 2
1 < , 4.2.2
I sp Sogn = () *2.2)
i int Mn (@) S 2 (4.2.3)

We will continue the habit of denoting a dimension-like object in proofs by «, but this time o = %

The following lemma is crucial for approximating the values of F,,(t).

Lemma 4.2.2. For a countable Markov shift (X, o, ¢, 1) satisfying the assumptions of Theorem we
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have o > 0 and

Fp(1)= ) p(C)* me 2, (4.2.4)
CeCy
and for each t > 2,
Fp(t—1)= Y ()" = e ™. (4.2.5)
CeCy

Proof. Let b, := maxcec, #(C), then Yoo u(C)? < by Yo, 1(C) < Kof™ where Ky > 0, § €
(0,1) were given by Lemma|1.1.6} hence

log F, (1
lim sup Lﬂ() > lim sup
n— oo -n n—00 —-n

—log by,
— 080 > —log s > 0.

The approximation formulae (4.2.4) (4.2.5) are from [CGR|, Lemma 2.13]. They were originally proved
for finite alphabets and the proof remains valid for countable cases if one combines with [HV, Theorem
1 (IV)], which holds whenever the relevant measure admits exponential decay of cylinder measures.

O

4.2.1 Proof of Theorem 4.2.1

We first prove the upper bound which requires approximating the measure of points of certain recur-

rence times, and a first moment summation. The proof for lower bound is similar but involves a second

moment argument.

~ _H
Proof of upper bound (4.2.2). Set o = # and
1
rn := —— (logn + loglogn) .
a—¢

As M, (z) = r, implies the return time of some iterate of x under o to some r,-cylinder is strictly less
than n, we need to approximate the size of short return sets in the system in order to apply Borel-
Cantelli Lemmas to obtain almost everywhere statements. Hence, as in [HV] and [[CGRI], we intend to

solve this by considering different cases of overlapping between r,,-substrings in z.

Overlapping Analysis
Let n € N. If r, is not an integer, we simply take the closest integer. For each k¥ € N, define the
following auxiliary sets.

Sk(ry) = {sc eYN:ofre Cr, (x)} .
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To put it into words, Si(r,,) is the set of points whose return time to the r,,-cylinder containing itself

is k. Then by construction,
w(x: My(x) >mr,) :,u({acEZ :30<i<n—1,1<k<n—i—1s.t ds(oim,oi+kx) §2_T“})

(U

n—i—

IN

=0 k=1

1
O’iSk(T’n)> ,
(4.2.6)

where d;(-, -) is the symbolic metric defined in (1.1.2).

In order to obtain good estimates of ;(Sk(ry)), we consider three separate cases according to the

values of k. Let
n—1 LTn/2J

Yo :=p U U o7 Sk(rn)

i=0 k=1

Similarly, set

Tn

n—1
Yii=p U U o k() |,

i=0 k=|r,/2]+1

and

Yo i=p (no ”U a_iSk(rn)) .

i=0 k=r,+1

Then (4.2.6) is replaced by
(M, > 1) < Bo+ X1 + 2o (4.2.7)

We will show that the measure of ¥(, ¥; are insignificant compared with .

Yo: return time 1 < k < |r,, /2]
Notation. For any finite k-subword of z starting from j, x;,zj4+1,...,2;4k—1, Write z(j, k). For each
w € N, z(j, k)* means that particular subword is repeated w-times consecutively whenever it is allowed

by the transition matrix.

Let wy = [Z2] and 0 < 7, < k so that 7, = kwy, + vk. Then if x € 7 Sy (ry,), ; = 2, if j = | (mod k)

forall j, I € [i,i + 7, + k — 1], therefore o’z has the following form:

o'(z) = (x(i k), z(i,k), ..., 2(i, k), 2, %), ...) = (2@, k)T (i, ),...) .

k-word repeating wy, + 1 times

That is, a k-word (z;,...,z;y+r—1) Will be repeated fully for wy + 1 times, followed by a truncated

~r-word with the same initial symbols.
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Titwpk—1
X Z; Tidr,—1
Tjtwpk—1
Ty Tjtr,—1

Figure 4.1: Overlapping for points in X; each segment stands for one copy of the repeated word.

Note that for each given i and all k < k' < |r,,/2] — i, if k divides &/, then 0 =¢Si(r,) C 0 S (rn).
Since for each k < |r, /2], there is some minimum ¢, € [[r,/4], |rn/2]] such that ¢, is a multiple of k

so that x € 07*Sy(r,,) C 0745y, (r,) where the ¢;, word is fully repeated wy, + 1 < 5 times.

Recall that p is 1)-mixing, and so it is quasi-Bernoulli in the sense for some uniform constant B > 1,
for any words w;,w, such that [w,w,] # 0, pu([w,w,]) < Bu([w,]) u([w,]). Therefore for each k €

[l7n/4], |7n/2]], by the quasi-Bernoulli property of ¢-mixing measures,

i ({0 (2) € Cp, (0'0)}) = p(Sk(ra)) < p(Se,(ra)) < B S u(Co)*a g7 < BFy, (),
Ce, €Cy

where 3 is a given by Lemma As r, < U (wg, + 1), e~ @%@k < e~ by definition of 7, and
(4.2.5),

Fy (wi) e ™ <exp(—logn —loglogn) <

nlogn’

To reduce again the redundant terms we have to sum up for ¥y, foreachi <n—1land1 <k < |r,/2],
we can omit o~ ¢Sy (r,,) if 2k < n—i—1, which follows from again 0 =S (r,,) C 0~ *So(r,,). Considering
all those discussed above, for ¥, we only need to consider points x such that ¢’z has short return time
ie,k<r,/2andi >n—r,. Asr, is of the scale of log n, we may choose n large such that r,, < nt/2

so that by Lemma |4.2.2}

lrn /2]
Bo= D D 0 'Sklra) S B ) ki (wn) 2 Boriemt ™ <
k=1

i>n—rn, k>1

BSr2 D 1

= . (4.2.8)
nlogn ~ logn

¥;: return time |r, /2] +1 <k <7,
In this case, z € 0~'S(r,,) implies z; = z; if j = [ (mod k) for all j,1 € [i,i + r,, + k — 1], hence o' (x)

has the form
ai(a:) = (x(iyrn —k),x(t+ 1y —k, 2k — 1), (6,1 — k), x(6 4 10, 2k — 1), (6,70 — K)y i, ks e v e e

shown by the following illustration (same colour implies the same subword repeated), so the (r,, — k)

word starting from z; is repeated three times, separated by two identical (2k — r,,) words. Hence by
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xX; l'i+rn—1

— o
Ly Ljtrn,—1

Figure 4.2: Overlapping of subwords for points in 3;

Lemma and the quasi-Bernoulli property,

plo™"Sk(ra)) = w(Sk(ra)) < B 37wl p(DY = BFy, 4(2) Faer, (1)

CeCr, —k
DECQkfrn
Then we obtain an upper bound for 3;:
S1<BY Y (n—k)F k(2 Far, (1) 2 B® Y (n— ke o3 mRema2Zher)
k=|rn/2]+1 k=|r,/2]+1
:BG Z (n _ kj)e—a(y-n—s-k) < B6€_%T"a Z (’I’L _ k) =< rnne—garn (4.2.9)
k=|rn/2]+1 k=|rn/2]+1
nry, ni/2p 1

< < .
“(nlogn)3/2 = (nlogn)3/2 ~ logn

Yo:rreturntimer, +1<k<n-—-i-—1
In this case, k — 7, > 1 and 2 € 0~ *Sy(r,,) implies x(i,r,), the r,-word starting from position i of z,

is repeated from the i 4+ k entry without any overlapping with itself, i.e.

o' (z) = (x(i,rp), 2(i 4+ 1y k — 1), 2(5,70), .. .).

rn-word repeated with k — r,, gap

X4 Titr,—1 Tj Ljtr,—1

Figure 4.3: Overlapping for points in Yo; black segment represents an arbitrary word of length r,, — k

Then by the -mixing property, the measure of such set of points is bounded by
K (UﬁiSk(rn» <A+ Yk =) Z U(C)Q = 1+ ¢k —rn))F, (D).
cec.,

Hence

Ss Y (- WSk € 3 (1= B)Y(1 4 9k — ra)) B (1),

k=r,+1 k=r,+1
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Again (1 + ¢(k)) is monotonically decreasing in &,

n—1 n—1
Spme 2 > (n—k)(L+ (k=) < (L+p(1)e ™ > (n—k)
k=r,+1 k=rp+1 (4.2.10)
—2ary, .2 1 +¢(1) 1 ‘H/f(l)
<(+v())e s (logn)? = logn

Then, combining (4.2.7)-(4.2.10), there is some constant K; > 0 independent of n such that

1
logn’

M({Mn > Tn}) < K;

Using the technique in the proof of [BLR] Theorem 5], we pick a subsequence ny, = e/**1 so for all k

large enough,
1

ﬁ .
Then by the Borel-Cantelli Lemma, for u-almost every x € 3,

/’L({Mnk > rnk}) < Kl

Mnk (x) S rnkv

which implies that for all k large enough,

M, (x) < 1 - log log ny,
logng, ~— a—c¢ logny /)~

Since M, (x) is non-decreasing in n for all z, for each n, there is a unique & such that ny <n < ng4q.

In particular,
logny, My, (z) < M, (z) - M,, . (x) log gy

< < , (4.2.11)
logng11  logng logn log ng41 log ny
As limy,_, 4 oo lolig”z:l =1 and limy_, ;oo l‘)lgolg()iil“v = 0, taking the lim sup of the inequalities above,
M, . n 1
lim sup Mo (z) = lim sup —% (z) < .
n—too lOgn n—+oo 1087 a—¢
([@.2.2) is proved by since ¢ > 0 is arbitrarily small. O

Proof of lower bound (4.2.3). We apply a similar second-moment analysis as in the proof of [[CGR|
Theorem 4.1]. Let

1
= (logn + Aloglogn)

for some uniform constant A < 0 to be determined later. Since o'**z € C, (o'z) if and only if

x € 07 'Sk (ry), then we can define the random variable S,,:

n—2r,—1n—i—1 n—2r,—1n—i—1

Su(@) = > > e, @ap@ )= Y > iy (@), (4.2.12)

=0 k=2r, =0 k=2r,
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which counts the number of times that = belongs to some oSy (r,,). As M, (x) < r, implies for all
0<i<n-1,1<k<n—i-1,2 ¢ o Sg(r,), and in particular not in the o=S(r,) sets with
k> 2r,,

{2 My(2) < 10} € {7 : Sula) = 0},

By the Paley-Zygmund inequality,

Var[S,,] < Var[S,,]

By S mE (4.2.13)

p({Mn <rn}) < p({Sn =0}) =1—p({Sp > 0}) <

By definition of o~¢S(r,) with k > 2r,,, this set corresponds to the set of points in which an r,,-word
repeats itself at least once with at least an r,, gap, therefore we have the following lower bound using
the ¢-mixing property,

1 ({Cr, (0'2) = Cp, (07F2)}) = (0 Sk(ra) = 3 p(C o *C)

cecC,,

>(1 =k —rn) Y w(C)? > (1—1(ra))Ey, (1).

CECTn

Therefore, as > 2rn =1 [ érll—(n—2rn—1)+(n—2rn—2)+---1,

E[Sn] > 5(1 = ¢(rn))(n — 2r,) 2 F, (1). (4.2.14)

l\J\H

Next, we need to consider

n—2r,—1n—i—1n—j—1

= Y Y Y oSk NS (). (4.2.15)

1,j=0 k=2r, [=2r,

Define the index set
I:= {(7;7j,k7l)€N4:O§i,j§n_2rn_172rnSkgn_i_la 2Tﬂ§l§n—j—1}’

then
B[S = > ulo7 Sk(rn) No7Si(ra)), (4.2.16)

(i,9,k,1) €T

and the cardinality of I satisfies

n—2r,—1 n—2r,—1
n n 1
#I-( Z nz)( Z nj)§4(n2rn)4.
=27, J=2ry

Define the counting function by

0:1—=N, 006,5.kD)= > 1a—r atr)®)
ac{iit+k}
be{j,j+1}
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i.e., it counts the occurrences that two indices in {i, 5,7 + k,j + [} are r,-close to each other. § > 0
implies there are overlaps between some r,, words, e.g. |i — j| < r, implies the r,, word z(i,r,)
overlaps with the r,, word z(j, r,), and both r,-strings are repeated later.

By our definition of S,,, for each quadruple (i, j, k, 1), necessarily k,! > 2r,, which implies
Oge(i7]7k7l)g27 v(i7j7k7l)el7

which allows us to split (4.2.16) again into three components,

E[S?] = (Z +Z+ Z) 1 (07 Sk(rn) N8y (ry))

Io I I
where I, = {(i,j, k,1) € I : 0(3,5,k,1) = t}.
Clearly,
#Ip < #I < i(n —2ra)*.

For each (i, j, k,l) € I, if we fix any three indices, for example, if ¢, j, k are fixed, j + [ can be r,-close
to either ¢ or ¢ + k as it is automatically 2r,-apart from j, hence there are at most 4r,, choices for the
remaining index /. Hence

#1 < 2r,(n —21,)3,

and similarly if we fix any two of 4, j, k, [ in I, there are at most 2r2 choices for the remaining two
indices, therefore

#1, < 27",2L(n - 2rn)2.

Contributions of indices in Ij:
We will consider the sum over indices in I, first. Since (4,4, k,1) € Iy implies no overlapping, = €
o~ "Sk(ry) N o918, (ry,) implies z(i,r,) = x(i + k,r,) and z(j,7,) = z(j + {,7,) while the symbols in

these two r,-strings are independent, e.g. when ¢ + k£ < j, = has the following form:
ol(x) = (x(i, ),y x(iyrn)s .o 2y rn)s - x2(4, 7))
Hence by v-mixing property
po ™ Sk(ra) N0 I81(r)) < (1460315 50))°Fr, (12, (4.2.17)

where

Yijkl :mln{|a‘_b| _T’n:aabe {Z,],l+k,]+l}}

Let I} C I, be defined as
I(/) = {(Z7J7k7l) S IO :Wijkl Z rn}7
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and I}) := Iy \ I}. Notice also that #(I}/) < 2r,(n — 2r,)3.

Define the notation for any G C I,

E[S2IG) = > (07" Sk(ra) N7 Si(rn)) .

i,k 1EG

Then, using (4.2.17),

E[S2|1)] = Z I (aiiSk(rn) N aijSl(rn)) < (n—2r)* A + ()3 Fy, (1)2,

6.4,k ET)
By Lemma (ry) < ;1 for all n large enough, then

(L+9(ra)” = (L= 9(ra)* < (L4 9(rn))” = (1= ()’

4.2.18)
_ 8(cv+ ¢) 1 (
= n 2 n 3 < ! < :

6 (rn) + 20(rn)” < 81" < logn + Aloglogn — logn

It is easy to see that #(I})) < 1(n—2r,)*. Using (4-2.14) with (4.2.18), as (1—v(r,))? > (1 — r;1)2 >

1, for some constant K, > 0,

E[S2|I}] — E[S,]? - (n—2rp) F, (1% (1 +¢(r)? — (1= ¥(ra))?)

E[S.2 (n = 2r)4 (1 = §(rn))? Fr, (1)2 (4.2.19)
o 4 9(r))® = (A =(ra)® _ Ky B
SR ) R )

For the sum over I/, the term 1 + v (v;;%;) in (4.2.17) is uniformly bounded above by 1 + (0), and

1 —4(r,) > 3 for all n sufficiently large, therefore

E[S2|1])] ~ rn(n —2r,)3(1 4+ (0))3F, (1) L
E[S,]? (1 —1(rn))2(n — 2r,)4F, (1)2 ~ n—2r,

hence for some K3 > 0 and all n sufficiently large,

B[S _ . 1

BE < Koigm (4.2.20)

Contributions of indices in I;:

Next, for (i, j, k,1) € I, without loss of generality, suppose only |i —j| =r < r,,i < jandi+k < j+1.
The other cases are treated exactly the same since the order of the r,-strings does not have any effects
on estimations of the upper bounds for p(o~*Sy(r,) N o=7S;(ry)).

An z € 07 Sk(ry,) NoIS)(r,) Means @i, = Tj, Titrq1 = Tj4ls -« -5 Titr, = Tj4r, SO o'z has the
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following form:

i —
g (‘T) _(xi7"'7mi+7‘—17xj7'"7‘rj+7'n—17"')xi+k7"'7xj+l7"')

= (x(i,r),x(j,rn —T),l‘(i—I—?“n,?"),...,x(i,r),x(j,rn _T)a"'ax(jarn —T),.If(i—f—?"n,’l"),...).

Again using the quasi-Bernoulli property and (4.2.4)),(4.2.5), for B > 1 the relevant quasi-Bernoulli
constant, since there are nine concatenations of words as explained above (we can count the number
of commas),
p(o " Sk(rn) No 7S (rn)) < B Y u(A)’u(B)*u(C)? = BF.(1)°F,, _,(2)
A,BEC,
CECrpp—r

j B9674arn673a(rn77’) S B9673arn )
Recall that 7, = = (logn + Aloglogn) and
e~ = (n(log n)’\)_ﬁ“g =n~a+= (log n)_a{%. (4.2.21)

For all n large enough such that

o

na+a

3] <1, (4.2.22)

by (4.2.14) and (4.2.22)) above,

E[S; 1]
E[S,]?

27, (n — 2r,, )3 Bl0e=37n
(n = 2rp)* (L = ¢(rp))Fr, (1)?
rpe 30T 1 logn+ Aloglogn

T (n=2rp)e~torn T a4e (n—2r,)e o

=

logn - (logn)!tate

IA

(n —2ry)e=om — n—2r,

< (log n)(1+)‘(1_ai+e)),

Forall0 < e <a,1— ais > %, so we can choose A = —4 so that 1 + \ (1 — aia) < —1. It is then

sufficient to conclude that for some constant K, > 0,

E[S2|11] 1
z <K .
E[S, 2~ tlogn

(4.2.23)
Contributions of indices in I5:

Finally for indices in I, an © € 0~ *Sy(r,) N o7 S;(r,) has very complicated overlapping behaviour
in the subwords x(i,7,) and x(j,r,). But this can be trivially and happily reduced to considering that
some r,,-subword is repeated twice from the i—th entry and the (i + k)-th entry without overlapping
each other. Using Lemma we bound the measure of 0=%Sy(r,,)No =75, (r,,) for each (i, j, k, 1) € I
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by
B* Z /L(C)Q ~ Bie~2amn,
cec,
The number of indices in I can be bounded by 272 (n — 2r,,)%. Then for A = —4 and all n verifying

@.2.22), by (4.2.14), (4.2.21)) and the fact that r,, < logn,

E[S?| 1] < 2r2 (n — 2r, )2 Be=20mn
E[Sn]2 - (n — 21"n 4(1 — 1/}(7%))2674047””

2

~—

3N

T note Ao
< 1 235
(n —2r,)2e20™ = (n—2r,)? (log )

Q

< (logn)?A+X0=552) < (logn)~2.

It follows that for some constant K5 > 0,

E[S2|12] < 1

B8 < K5 liagmy (4.2.24)

Then, combining (4.2.13) (4.2.16) (4.2.19)-(4.2.24), there is some constant Kg > 0 such that

1
logn’

N({Mn < rn}) S K6

We can repeat the trick of picking a subsequence n; = (e’“2], and apply the Borel-Cantelli Lemma to
the sum Y 7 | u({M,, < ry,}) < +oo, which means for all k large enough,

M, (z) 1 <1_4log10gnk).

>
logn, — a+e log n,

Taking the liminf on both sides and applying the subsequence argument (4.2.11)),

lim inf M = liminf My, (z) > ! .
n—+oo logn n—+oo logny a+e
Thus (4.2.3) holds as € > 0 is arbitrarily small. O

Therefore, for (X, ¢,0) a topologically mixing countable Markov subshift where ¢ is a locally Holder
potential and x the corresponding unique Gibbs measure,

im My(z) 2
n—oo logn — Ha(p)

for p-almost every x € 3.

4.3 Shortest distance problem for Gibbs-Markov interval maps
We will say goodbye to our great friend symbolic dynamics and consider a general compact metric
space (X,d) with f : X — X. One can study the shortest distance between iterates of typical points.

For two orbits generated by typical points, we wish to prove the limiting behaviours for the following
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quantity:
. : o
ma(z,y) = _min  d(f'z, fy).
For symbolic systems with the natural symbolic metric ds, M, (x,y) = —logmy,(z,y)/log 2. The quant-

ity m,,(z,y) is related to various objects, e.g. the correlation integral, extremal value theory with clus-
tering phenomena, shrinking target problems; and as cover times in Chapter[3} this problem is linked

to hitting times:
writing W, (z,y) :=inf {j > 1: fiz € B(y,r)}, Wy(z,y) < n implies m, (z,y) < r.

Also note that if m%Y (z,y) := ming<;<n, d (f'z, f'y) , then one can see this is closely linked to Li-Yorke
mf{y(w,y) _

s 1 almost surely.

pairs and one might expect lim,,_, o

Coming back to m,,, the first almost sure result concerning its asymptotic growth was given in [BLR],
the same paper dealing with almost sure growth of substring matching, the authors proved the follow-

ing theorem.

Theorem 4.3.1. [BLR, Theorem 1,Theorem 3] Let (X,d, f, 1) be a probability preserving system such
that D,(u) > 0. Then for u x p almost every (z,vy),

lim s log my, (7, y) 2
11m su .
ot —logn  — Dy(n)

Furthermore, if (X,d) is tighlE] and (f,u) has polynomial decay of correlations (see Definition

below),
lim inf log mn (2, y) > 72 .
n—o0 —logn Do (1)

Subsequent research, just as in the previous section for substring matching in symbolic dynamics,
proves analogous statements for multiple orbits and random dynamics [BR21]][GRS]]. The notion of
decay of correlations will be defined in Definition In the theorem above, the quantities D, (u)

and D-(u) are called correlation dimensions, which are generalisations of the Rényi entropies.
Definition 4.3.2. Let (X, d) be a metric space and . a probability measure on the Borel sets in X. The
upper and lower correlation dimensions of u are

— I B 1 B
Dy(p)  limsup ELEB@ D @) o [ (B r) due)
r—0 logr r—0 logr

respectively, and we write Do (u) when the two limits coincide.

2The terminology is inherited from [BLRI], which is similar to the notion of doubling for metric spaces: a metric space is tight
if there exists ro > 0, No € N such that for every 0 < r < r¢ and all z € X, the ball B(z, 2r) can be covered by at most Ny
number of r-balls. This is similar to the notion of bounded local complexity discussed before Lemma m
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Clearly, if X C R and Leb is the Lebesgue measure then Dy(Leb) = 1. If 1 is an acip with a bounded
density function then Ds(u) = 1 as well. The aim of this section is to prove the following theorem,
which is a twinned statement of Theorem [4.2.1] for Gibbs-Markov maps defined in Example but
we allow that the alphabet of the corresponding symbolic shift to be countably infinite. Let X be
a closed interval in R and f : X — X a Gibbs-Markov map as in Example with a countable
partition. A Gibbs-Markov f admits an invariant probability measure p with the Gibbs property, and

by [You] 1 has exponential decay of correlations and verifies the CLT.

Definition 4.3.3. Say f : X — X has exponential (or polynomial) decay of correlation for BV against
L' observables, where BY := {f € L'(u) : f has bounded variation.}, if there is p : N — R with
p(n) = Cre=" or (p(n) = Cyn=1) for some C1, ¢; > 0, and forall ¢, : X - R, f € BV and g € L,

‘/¢~s00f'” du—/¢du/s0du‘ < Iéllsvllllip(n)

where the norm ||¢||gy = ||¢]l1 + TV(¢), and TV(¢) is the total variation of ¢. For 1p an indicator

function of some measurable E C X, | 1g|py =2 and ||1g|1 = p(E).

A messier decay of correlations for multiple functions will be proved later in Lemma [4.3.12| The main

theorem of this section is stated below.

Theorem 4.3.4. Let X be a closed interval of R, (X, f) a Gibbs-Markov system and . a Gibbs probability
measure admitting exponential decay of correlations for L' against BV observables. Then if its upper

correlation dimension Dy (u) is bounded away from 0,

lim inf log my, () > 72
n—oo —logn D2(M)

for p—almost every x in the repeller A. If u is absolutely continuous with respect to the Lebesgue measure,

then
lim log my, () _ 2
% logn  Dalp)

u-a.e.

In this case, as the invariant density (with respect to Lebesgue) is bounded, D, () = Do (1) = 1.

This theorem is applicable to the following systems.

Example 4.3.1 (k-multiplying maps). f : [0,1] — [0,1], f(z) = kx (mod 1) for k = 2,3,..., and
p = Leb. In these cases the uniform k-Bernoulli measure ji on {1,...,k}"o satisfies y = . f for all

cylinder sets, and Bernoulli measures are clearly Gibbs and v-mixing.

Example 4.3.2 (Piecewise affine interval maps). Let {a}, be a monotone decreasing sequence with
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a; = 1 and limy ar, = 0. Then f : [0,1] — [0, 1] with
1

S

f|[ak+1,ak) Ak — Qpt1

satisfies the assumptions of Theorem

Example 4.3.3 (Gauss Map). Define the Gauss map G : [0,1] — [0, 1] by
(mod 1) =z € (0,1],

1
Gx)=<"*
0 x=0.

It is a full-branched map. Let u be the Gauss measure, which is the Gibbs measure for the potential
—log DF with density 4£¢ — which is bounded for all « € (0,1]. Then Theorem holds

1
dLeb — (1+4z)log2
for (G, pg).

Example 4.3.4 (An induced map). Let F be the first return function to [0, §) of a Manneville-Pomeau
map f:[0,1] — [0,1]:
x(1+2%%) x€][0,1/2),
flz) =
2 — 1 ze[1/2,1).
for a € (0,1). There exists up a Gibbs probability measure with respect to the potential —log |DF|

(see [LSV]) and is an acip.

As in the symbolic setting, the one-point orbit case involves short return behaviour which complicates

log m., (z)

things slightly: approximating short return to balls is crucial for obtaining the upper bound of =% Tomn

that is also generally harder than the recurrence analysis of cylinders. Another challenge appearing
here but not for the symbolic setting is that the open balls defined by the Euclidean metric and the
cylinders generated by the natural partitions disagree, and for points located on the boundary of

adjacent cylinder sets, their symbolic representation may not be unique.

For A the repeller (see (3.2.I) for definition) of a Gibbs-Markov map f and d(z,y) = |z — yl, (A, d)
trivially satisfies the bounded local complexity condition: (X, d) has bounded local complexity if there
exists Cy € N such that for each r > 0, there is k(r) < oo, and {7, 25, ..., 2}, } € X such that

k(r)
XcC U B (x;,r)
p=1

k(r)

and each » € X belongs to at most Cy elements of {B(x},2r)},2{. Any compact subset of R has

bounded local complexity: compact implies totally bounded which gives k(r) < oo for all » and Cy can
be chosen to be 4 because one can choose an r-net such that d(zj,z}) > r fori # j € {1,...,k(r)}.
The property verifies an alternative way to compute D5 (u). The following lemmas are analogous to
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[GRS|, Lemma 12, Lemma 13].

Lemma 4.3.5. Forall z,y € X, let1,, :=1 . If X has bounded local complexity,

B(w;,Qr)

1B(w77‘) (y) < Z 11077“(33)11177‘(2*/) < CO]—B(mAr) (y)

p=1

89

Proof. Givenr > 0andx € X, asU,B (z}, ) is a cover of X, there is at leastone p € {1,..., k(r)} such

that d(z,z;) < r. Then if d(x,y) < r, d(y,r,) < 2r hence 1 = 1, ,.(z)1, (y) and the left inequality is

proved.

On the other hand, by bounded local complexity, there are at most Cj elements of p € {1,...,k(r)}

such that 1, ,(x) # 0, and for each such p, 1, ,(y) # 0 implies d(z,y) < 4r, which proves the right

inequality.
Lemma 4.3.6. The following identities hold.

k(r 2 k(r 2
. log Ep(:1) (f 1p,rd,u) = .. . log Zp(zl) (f 1P,leu’>
lim sup = Dy(p), liminf
r—0 log r r—0 logr

- QZ(:“’)?

which means for any € > 0, there is o > 0 such that for all 0 < r < ry,

k(r)

2
7,,52(/1)"1‘5 < Z (/ 1p,r dﬂ) < TQQ([L)—E.
p=1

Proof. Proof for this lemma can be readily adapted from the proof of [GRS, Lemma 13].

4.3.1 Proof of Theorem 4.3.4
Define the following quantities inspired by [GRSI,

(n) = (logn)?

B . o
<(y) = d(fig. £I
m;; (z) bR (flw, flz),
li=j|<e(n)

>0 . : T
my (@)= min d(f', Pa),
li—j|>e(n)

> — : d i 7
m; (z) : ogrznglg/g (f'z, flz),
2n/3<j<n

O

4.3.1)

(4.3.2)

Obviously, my(x) = min{m3(z),m; (z)} < m(z) for all z € A and n € N. Then under the

conditions of Theorem |4.3.4] we prove the following.

Proposition 4.3.7. Let T : X — X be a Gibbs-Markov map defined above, and p its invariant Gibbs

measure admitting exponential decay of correlations for BV against L' observables, then one has for
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u-every x € A,
>
lim sup M < l (4.3.3)
n— 0o - log n QQ

If ju is absolutely continuous with respect to Lebesgue measure, D, = Do = 1, and

logms 2
limsup 287 (@) o 2 (4.3.4)
n—00 - 10g n D2
for u-almost every x € A.
Proposition 4.3.8. For all Gibbs measures i, for u-almost every x € A,
1 > 2
liminf 2872 @) 5 2 (4.3.5)
n—oo  —logn D,

Putting these two propositions together imply Theorem [4.3.4] i.e., if 41 is an acip,

im 08™n(T) _

n—oo  logn

p-almost every x € A.

The proof of is basically a practice of applying decay of correlations, whereas the proof of
requires estimating the measures of sets of short return points. During the proof we will
see also that and hold for all Gibbs invariant measures with exponential decay of
correlations and Dsy(u) > 0. Also for Gibbs acip p, the correlation dimension is well-defined in the
sense that Do(u) = D,(u) = 1, because the invariant density with respect to Lebesgue measure is

uniformly bounded; hence Dy () = Do (Leb).
Also, for simplicity of calculation, the following definition is introduced in [GRS].

Definition 4.3.9. A term is said to be admissible if it has the form r~*g(n), for some k > 0 and a function
g which decays in n faster than any polynomial of n, hence for any k € N, by (4.3.2) and choosing the
scale of r as in (4.3.6) below we can bound any admissible error by O(n~*) for all n large.

Proof of (4.3.3). Let ¢,r > 0 be given, in particular, r should be small enough that it satisfies (4.3.2).

Define the random variable S;,

k(r)

S (z) = Z Z Lo (f'2) 15, (f2).

p=1 0<i<j<n
[i—j|>e(n)

By Lemma [4.3.5] {m, (z) < r} C {S; > 1}. Therefore, by Markov’s inequality and decay of correla-
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tion,

k(r)

Mo S =D <EST = Y Y 1, (1) 1, (Pa) duta)
0<i<j<n p=1
j—i>e(n)

k(r)

2 2 ( ([ du)2 +p(e(n))||1p,r||5v||1p,r||1>

0<i<j<n p=1

j—i>e(n)
k(r)
< >0 P T SN syt lie(en)
0<i<j<n 0<i<j<np*1

< n2pPame 4 gy erllogn)® 222u (xp,21))
< n?rPa—e 4 QC’OCle_Cl(log") n?

where the penultimate line holds due to (4.3.2), and the last inequality follows from the definition of
bounded local complexity. As ¢~ (log n? decays faster than any polynomial of n, replace all r terms

above with
242 _ 242
T = exp (— D+ Eg(logn + loglog n)> <n ﬁﬁs, (4.3.6)
Ly —

for all n sufficiently large,
nQTnQ2—€ + 2cocln26—cl(log n)? < n-2 + Cle_cl(logn)ZT;CQ.

The second term on the right is admissible by definition, thus there is some constant Cy > 0 such that

for all n large enough that n=¢ <

logn

1

> <r) < > < €
plmz (@) < 7) SEIST] < Con™ 5

Applying Borel-Cantelli to a subsequence ny, as in Section [4.2.1] eventually for u-a.e. x,

logm;; (x) 24¢ (1 N loglog nk> .

<
—logny T Dy—c¢ log ny

Although m. is not monotonically increasing, for each n € [ng,ns11], we define

—log mnkﬂ(z) = —logogiir];ig;k+1 > —logm,, (x),— log mnk (z) := —log 09_121;% < —logm; ().
j—i>e(nyg) j—i>e(ng41)
4.3.7)

By modifying the arguments we have done so far, one can show exactly that, for u-almost every x, for

all k large,

—logmy,, () < 24 ¢ 1 log log ny,
log ng ~ Dy —c¢ log ny,
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and

—logmy,, (z) < 24¢ 1 log log ny,
log nyg ~—D,—c¢ logng /°

By (4.3.7), these limits can be passed to the whole tail of m, . As e > 0 is arbitrarily small, (4.3.3) is
proved. O

Note also that for |i — j| relatively large, the measure of the sets {z : d (fiz, f’z) <r} scales like
rP2 which is similar to the sequence matching problem in the symbolic setting, and this matches our

intuition because Dy (u) is analogous to Hs in some ways.

To prove (4.3.4), we need to deal with iterates of x which return to an r-neighbourhood of itself within
e(n) iterations, so again we need to approximate the measure of some short return sets as those S, (k)
sets defined in Section for the symbolic case. But we cannot expect a similar upper bound for
short returns as in or (4.2.9). This is because for symbolic structures, an r,-cylinder is itself
an r,, open ball with respect to the symbolic metric, so analysing the returns is equivalent to analysing
the repetition of letters in cylinders and one does not need to consider the case that two iterates o (z),
o’ (z) are close to the boundaries of two open balls with a common boundary but belong to different

cylinders.

For interval maps, although the Gibbs-Markov structure prescribes a natural partition hence a way to
define cylinders, the metric balls and symbolic cylinders are different objects so one needs to take more
caution and include the case that two points belong to different cylinders U, V' € P,, but accumulate on
a common boundary of U,V with distance smaller than the contraction scale of n-cylinders. Luckily,

for Gibbs-Markov maps there is the following lemma.

Lemma 4.3.10. [HNI} Lemma 3.4] Define the sets
En(r)={zxe X |x— ffz|<r}.

Then for f satisfying Gibbs-Markov property with the invariant Gibbs measure p absolutely continuous
with respect to Lebesgue measure and with exponential decay of correlation for BV against L' observables,

there is some constant Cs such that for all n € N and r small enough,

1 (En(r)) < Car.
Proof. The original lemma states that m (&, (r)) < r, and since m is equivalent to 4 on A with du/dm
bounded away from 0 and +oo, there is a uniform constant C), such that

C'm(A) < p(A) < Cum(A)
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for each measurable A; therefore there is some C3 > 0 such that

1 (En(e)) < Cse. O

Proof of (4.3.4). Define the random variable S= by

n—1e(n)A(n—i—1)

Sg(@) =Y > lpgaunfTr),
k=1

=0

where a A b = min{a, b}.

As {z: 1p(iz, (f7TF () =1} C {a: flo € E(r)} = f~'E(r), using the Markov inequality and
Lemma |4.3.10we obtain the following bound:

n—1e(n)A(n—i—1)

WS > 1) <EnlS5] < > ulfTE(r) < ne(n)Car
k=1

Pick r = r,, as in (4.3.6)), for all n large enough such that

I
=)

i

£ £ 1
= (1 2< 2—¢ T2 < .
c(n) = (logn)® <z, 07T < o

As the invariant density du/dm is uniformly bounded, Dy (1) = 1 < 2, one has

1
logn’

. _ 242 .
w(x:my(z) <r,) < Conttr—=r< nﬁan Dy—s < (CO3n~ 2-2 <

Therefore, by picking a subsequence n; = [ekQ], by Borel-Cantelli Lemma we have that u{z : m,, <

ry, for infinitely many k} = 0, so for u-almost every z, for all k large enough,

mTSLk (I) Z Tny, -

We then repeat the subsequence trick to obtain (4.3.4) for p-almost every z. ]

Remark 4.3.11. The condition that p is an acip may be not sharp; if v is another invariant probability
measure with exponential decay of correlation and satisfies v(Ex(r)) = r, then Proposition remains
valid.

log m, (z

As in the symbolic case the proof for the lower bound of == Torn ) is slightly more complicated and also

requires a second-moment computation which exploits the following notion of mixing.

Lemma 4.3.12. The unique Gibbs measure p with respect to the geometric potential —log |Df| for a

Gibbs-Markov interval map f has exponential 4-mixing, that is, for a < b < cin N, there are C7,c} > 0
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such that for all uy,us € BY, usz,uy € L, such that

‘/ul (uz o f*) (uz o fb) (ugq 0 f€) dp — /u1 (ug o f4) d,u/w, (ug 0 fcfb) du| < C{efcll(bfa).

The constant C} depends on the functions u,. In particular, for any given r > 0, 0 < p,q < k(r),

ur =ug = 1, ,, u3 = uq = 1y, the constant C{ does not depend on r.

Proof. Consider the transfer operator £ associated with the geometric potential — log | D f|, that acts

on the space of functions of bounded variation, BY = BV (X),

L=L:BY—BY, Lu(zx)= Z e~ o8 IDFWlyy(y).
Ty=x

Let v be the eigenmeasure of £ and h the invariant density, ‘;—‘Ij = h. By the following well-known
fact, (see for example [Kelll (3)]) for topologically mixing Gibbs-Markov maps, there are Ciy > 0,

k € (0,1) such that for any u € BY,

’E”uh/udu

[ w17 (uo 1) (wao £ du= [un(uae ) do [ (uso £°0) du‘

< Cpy - K" ||ul|gy.
BY

Then,

= /Eb_“(hulug o f¥) (ug o f*) (ug o f70T) dv — /hul(ug ofa)du/h(u3 o f*) (ugo f70T ) dv

= / <[,b“ (hujug o f) — h/huluQ o f¢ dl/) uz o fluyo fedy

< [[us]|oo|taloo

1

[,b*“(huluQ o f*) — h/hu1u2 o f*dv

<Cpy - K"~ huruz o £ ||svllus|loolluall, )

where || - ||; denotes the L! norm with respect to v, and the first equality holds by the duality of v.
huius o f is of bounded variation because h is of bounded variation, and the product of functions in

BY has bounded variation, and the first part of the lemma is proved.

Now we deal with the case where u;’s are indicator functions 1,, or 1,,, and find a suitable upper

bound for

||h1p,7“1q,r © fa”zgv = thp,rlq,r © fa||1 + Tv(hlpﬂ”lq,r o f%).

For the 1-norm,

/|h1p7r1q,rofa|dl/ < ||| so-
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For the total variation, first recall that for any functions u,v € BV,

TV(uv) < [Jul| o TV(0) + [[v]loc TV (w).
Then, as for any indicator function 1, ,, TV(1,,) < 2, we have

TV(h1,,1g0 f) < ||h||ooTV(1p,r1q,r o f%) + Hlp,rlq,r o foo
< lloo (I llocTV(1g,r) 4 [11g,r © O]l TV(1p,r)) + TV(R)

< 4kl + [l By-

Therefore, for any p,¢ and r > 0, if uy,u3 = 1,, and uz,us = 1,,, () is bounded from above by
Cgy 5”th><> Kb, O

Proof of lower bound in Theorem [4.3.4

Now we can finish the remaining proof of Theorem which, similar to that of Theorem [4.2.1}

involves a second moment argument where the 4-mixing property becomes useful.

Proof o . Let e > 0 small be given. Consider the quantity m.> and the random variable S.>:
g

k(r)
> () = i d(fiz fi S (2) = 1, (fiz)1,.,(flz).
m, (z) o (fla, flz), 87 () o<§/3 ,; pr(f'2) 1y (f72)
2n/35j<n 2n73§j<n

By Lemma 4.3.5, m;” () > 4r implies for all pairs of 0 < i < %, 2% < j < n, if for some p, d(f'z, z},) <
2r, then d(f7x, z;) > 2r hence S (z) = 0. By the Paley—Zygmund inequality,

p(my, >4r) < p(z: 87 (x) =0) < E[(S?]E)][‘]g;ﬂﬂ;][&?]

Using decay of correlations and invariance of p,

EST@ = 3 3 [l ot (Pa) due) < (3) Z((/ e >)2+2p<n/3>>.

0<i<n/3 P
2n/3<j<n

(4.3.8)

Consider

S>> Zzzlpr fx p,T fZL') q’“(f :C) qr(f (E)

1,J St p,q

As in the proof of symbolic case, we will split this sum in terms of the distance between the indices

1,7, s,t. Recall that
e(n) = (logn)?.



96 CHAPTER 4. LIMIT THEOREMS FOR SHORTEST DISTANCE PROBLEMS

Let @ be the collection of all possible quadruples of indices (i, j, s,t), and define the counting function

7:Q > NU{0}, 7(i,7,s,t)= Z Lja—e(n),ate(n)) (0)-
ac{i,s}
be{j,t}
Then 7 < 2 since i,j and s,t are at both at least 7 iterates apart. This allows us to split @ into
Qm = {(i,j,8,t) € F: 7 =m} for m = 0,1,2. Obviously, the following upper bounds hold for the
cardinality of each Q,,,

#Qm < )™ (2). 43.9)

Recall the notation
ES7)Qnl = Y 3 [ ol (P Ly (P01 (12 dia),
(4,7,8,6)EQm DPsq

also for simplicity, let

Ry = [ Ly di = (B, 20)

Contribution of indices in Q:

For each (i, j,s,t) € Qo, without loss of generality, suppose i + €(n) < s and j + €(n) < t, as the al-
ternative cases can be treated equally by exchanging the roles of i, s or j, ¢ which makes no difference
to the calculation. As min{j,t} — max{i,s} > %, by Lemma and invariance, one obtains the

following upper bound for each such quadruple (z, Jy S, t):

Z / 1 (fix)1p-,r(f'jx)lq,r(fsx)lq,r(ftx) dp

p,q

= Z / 1prlgro fs_ilpw ° fj_ilq,r o f*dp
P,q

< Cieic;%k(r)z + Z / 1pr1lgr0 o dﬂ/ 1prlgro f7d
p,q

< Cre 5 k()2 + > > (RpRy +2p(e(n)))”
p q

< Che 5 r2% 4 8p(e(n))r—2% + Z (RyR,)*
p,q
The last inequality holds as R,, R, < 1 for any p, ¢, and by [GRS| Lemma 3.3] k(r) < r—Co for some
C! = 4log Cy. Any term in the inequality above involving p(e(n)) or C}je15 is admissible, hence for
each k € R it is bounded by O(n~F) for all n sufficiently large, and now we pick

_3—45
r=r,=mn D2te,
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Then by (@.3.2)
o 2
rPate <% (/ 1, du) =Y R} (4.3.10)
p p
Therefore, the contribution of indices in @)y is bounded from above up to an admissible error by
4 4 4 ?
n 2 2 n 2 2 _ (T 2
()Exmn:() Tuys- () (Tn).
p q p q p
combining with (4.3.8)), up to an admissible error term,
E[(S7)%|Qo] — B[S = (n 7).
Also by (4.3.8), as p(%) is admissible we can bound it by n~3,
4, 4
>12s (T Dote _ Ty s (™ —2-4e _ =3)2 . 8¢
ESTP 2 (5) (0 -20(3) 2 (5) @ n)
allowing us to conclude that there is some constant C, > 0:

E[(S7)?|Qo] —E[S7]* _ C4
e
E[SZ]? T onf

(4.3.11)

Contributions of indices in Q1:
Now we will deal with the indices in Q;. Without loss of generality, suppose |i — s| < e(n), i < s and
Jj < t, the other cases can be treated by exchanging the roles of i, s or j, t. By invariance, Lemma(4.3.12

and decay of correlations, for 7, j, s,t € Q1,
S [ (F 0 (P () (5 0) i)
p.q
= Z/1P7T1Q7T o fs_ilpw o fj_i1q7T o ft=tdpu
p,q
< Cle™ 5 k(r)? + Z (/ 1,,1,, 07 d,u) /1W(x)1q,r(fs—”x) du(x)
p,q

< Cie_CQ%T—QCS +2p(e(n)) + Z (RpRy) / 1p,r(x)1q,r(fs_ix) dp(z).
Pq
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Using Cauchy-Schwarz inequality, the last line can be bounded by the following up to an admissible

error (recall Definition |4.3.9)

Z/RPqup,r(x)lq,r(fsfix) du(z)

p,q

= /ZRplp,r(x)Zquq,r(fs_i)dM(x)

< (/ (Xp; RP]'P,T(I)>2 du) % (/ (Zq: Rqlg, Of”>2 du)é
(o)

where the last line is by symmetry and invariance. Notice that for all real numbers a4, ..., a,, > 0,

(a1+a2_|_...+am)2Sm(a%—kag—&—...,cﬂ).

m

k(r)

By bounded local complexity assumption, there are at most Cy non-zero terms in {1, ,.(v)},-1

reX,and (1,,)2<1,,,

for any

2
(Z R,,1p,r> dp < / Cod R2,,du=> CoR: / Lyrdp=Co» R
p p p p

2 2 3/2 X
As (a1 + -+ +am)® < Y it af, clearly >, ap < (Zk az/?’) , there exists some constant C5 such

that for all n large enough with e(n) < n°,

[MY

E[(57)Q)] _ 2W(3)°Co (5, 7)
ESZP T (3)(2, By — 20(e(n)))? |
) 6e(n)Co (zp Rg)
n ((Zp ®)" e (S, 1)+ aptetn? (3, 82) 2) (4.3.12)
< 6Che(n) _ 6Coe(n)
= <(Tﬁ2+5)1/2 _ (’)(n—l)) n((n172% — O(n1))

O5TL€ 05

)

P E——
—n,n—l—i-?s ne

Nl

because (3, Rf,)‘%élp(e(n)) and (Zp Rf,) % p(e(n)) are both admissible errors.
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Contribution of indices in Q:
Finally, let us consider indices (i, j, s, t) such that |i—s|, [ —t| < e(n). By Lemma4.3.5, > 1, ,(f*2)1y,(f'x) <

Cy for any z, therefore for each 7, j, s, t in Qo,
S [ Pt )y 01 () )
P.q
<03 [ A7 () )
p
< Cy ZRIQ, + Cop (g) k(r).
P

Therefore, as #Q2 < %e(n)2n2, by our choice of r,, in (4.3.10]), up to an admissible error there is some
constant Cg such that,

E[(57)°1Qz) _ _ 4c(m)*(5)°Co}, By

ESZ1? — (3)'(C, ’f — 2p(e(n)))?
36Che(n)?
-1
(£, 1 - dptetn) + an(eto? (£, 13) )
36007226
n2 (rﬁﬁs - O(n—2)>
067126 C(;

(4.3.13)

= n2n—2+4e n2e’

Hence, putting (4.3.11)), (4.3.12)) and (4.3.13) together, we can conclude that for all n large enough

_ 2—4e .
and r =r, =n D2+<, there is some constant C; > 0 such that

Var[S”] O
> < <=
wu(m;” > 8ry,) < ESPE = n

Picking a subsequence n; = [k?/¢], the probability is summable along the subsequence which means

that by the Borel-Cantelli Lemma, for p-almost every z, for k large
—logm;” (x) > —log 4ry, .

The proof of (4.3.5) is yet complete because m;> is not a monotone sequence so we need to repeat the

trick at the end of the Proof of (4.3.3). For each n € [ny, ng41], define

_ > > i g Jp) — *
logm;” (z) > —log oLoin d(f'a, flx) = —logm;, (x).
2npy1/3<j<ng

>

As for all k, m; (x) < my, (2
.. logmy, —

that lim lnfk—mo Wnkk > %23_68

), repeating the same proof we have done for m_> one can also show

, such a lower bound can be passed to the entire tail of —logm;’ (),
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and then — log m,,(x). We can conclude

lim inf Lg mn (2) i
n—oo —logn D-

for pu-almost every x since £ > 0 was arbitrarily small. O

Remark 4.3.13. (4.3.3) and (4.3.5) still hold if decay of correlations is exponential with respect to other

Banach function spaces BB, B’ — for example, both observables are in BY or Lip, where Lip := {f € C(X) :

[ is Lipschitz} — as long as p(e(n))||1p.||8||14,-||8- remains an admissible term. For example, if the system

k(r)

p—i (a set

has decay of correlations for Lipschitz observables, one can replace the 1, , functions with {p; }
of discretisation functions defined in [[GRS]) although it requires heavier machinery to adjust the proof for
(4.3.5) and Lemma |4.3.12 Lastly, instead of exponential decay of correlations, the proof remains valid

under stretched exponential decay by manipulating the scale of k in €(n) = (logn)*.

4.3.2 Irrational rotations

Just as in Section[3.2] mixing is important in the proofs in last section, so we look at irrational rotations
again to see what happens if mixing properties are absent. Recall that given an irrational § € (0,1),
Ty : [0,1) — [0,1) is defined by Ty(z) = = + 0 (mod 1). For all z € [0, 1), the shortest distance quantity

M, (z) is independent of x:
mp(z) =min{||(i —7)0|| : 0 <i < j<n}=min{|[kf] : 1< k] <n} =m,(0), (4.3.14)

where the norm || || was defined in Definitio Then the single-orbit shortest distance problem for
circle rotations is simply determining the limiting behaviour of logm,,(0)/ — logn. It should be noted
that the waiting time results in [KS] and the proof for [[BLR], Theorem 10] are not directly applicable

here, since this is essentially a recurrence problem.

Theorem 4.3.14. Let 6 € (0,1) be an irrational number with n(6) > 1, then for every z € [0,1)

1 1 1
liminf 287 _ L i sup 28T (2)

>1
n—oo —logn n n—oo —logn T

logm,(z) __ 1
—logr

If0isan algebrai number, then n(6) = 1 and limsup,,_,

Proof for limsup. By (4.3.14) and Lemma {ll70]1}jen is a decreasing sequence, then it suffices to

log [|nd]]
logn

check limsup,,_, . By Hurwitz’s theorem [Hur]], for all irrational number 6 € (0,1) there are

infinitely many pairs p, ¢ € Z such that

1
V52

3A number is algebraic if it is a root of some polynomial with integer coefficients.

’9 — 2” < (4.3.15)
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which implies
. log m, (0)
limsup —————=

n—o00 - 10g n n—oo 1

=limsup ——— > 1. O
o n

log [[nf]]
0

Now suppose 6 is an algebraic number and let £ > 0 be arbitrary, notice that in this case n(6) = 1. By

the famous Thue-Siegel-Roth theorem [Rot], for all irrational algebraic number 6, there exists ¢(0, ¢)

such that there are only finitely many pairs of p, ¢ € Z with

[ )
q q2+6

Since ¢ > 0 was arbitrarily small, we conclude with

1
lognfl] _

lim su
n—oo log n

Proof for liminf. Now let n = qr11 — 1 where g is the k-th convergent’s denominator as in Defini-

tion By Lemma [3.5.6/(c) and (4.3.15) above, by sharpness of the constant /5, for all z € S?,

lim = =—,
k—oo  logny k—oo logqrt1 = k—oologgri1 M
therefore
1 1
lim juf 087 (@) 1
n—oo —logn n

To prove the lower bound for lim inf, recall that 7,.(x) is a cover time if for all y € S!, there exists
j < 7(2) such that d (fiz,y) < r. Soif 7.(z) = k, there exists ¢, j < k such that d (f'z,y) and
d(fiz,y+2r) <r, which implies d (fiz, f/z) < 4r. Lete > 0 and set r,, = n~ 7, by Theorem ,

for all n large enough there is 7, (z) < r, ") = n, that is m,(z) < —7i577- As this holds for all n

large,
1
log m., — 1z logn 1
tim it OB ) o g T 8L
n—oco —logn n—oco  —logn n+e
This concludes the proof for lim inf and the theorem. O

Again, we have shown that just like the two-point orbit case [BLR, Theorem 10], the asymptotic

shortest distance in one-point orbit under irrational rotations may not converge.

4.4 Shortest distance for suspension flows
Another immediate application of Theorem [4.2.1]is the shortest distance problem on the suspension
flows defined in Section Recall the suspension flow setting: ¥ is a two-sided Markov subshift of

finite type, ¢ : ¥ — R a Holder potential, u the Gibbs measure for ¢, and ¢ : ¥ — R>( an L' () roof
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function with inf ¢ > 0. The flow space is

Y, ={(z,5) € ¥ xR0 :0<s < ¢(x)}/ ~, equipped with the Bowen-Walters distance dy .

puxLeb|y,,

WxLeb(¥) which is a flow-invariant probability

Let {¥,}; denote the suspension flow on Y, and v =
measure on Y, (see e.g. [AK]). For each z € ¥ and T" > 0, let
n—1
k(x,T) := max< n € Ny : Z ¢ (olz) <T
j=0
Then as ¢ is L'(p), for p-a.e. z € ¥, the limit
n—1 k(:C,T)—l

1Zw(ojx)= lim 2= sO(m)/Tz/apdu

lim —
o s Tooo k(z,T)/T

is finite. By the definition of k(z,T), Z;?(:%T)fl ¢ (09z) /T — 1 so the above implies that for p-a.e.

T E Y,

lim

T—o0 k(l‘, T)

= /tpd,u. 4.4.1)

Define mY (z,s) = min {dy (¥, (x,s), Uy, (z,8)) : t1 < t2 < T} and m¥((z,s), (y,t)) the analogous

two-point version. By [RT, Theorem 4.1, Theorem 4.2], for v x v almost every ((z, s), (y,1)),

i 08 ((2,5), (y,1) _ 2log?2
1m =
T—o00 —IOgT HQ(,U)’

where Hs(y) is the Rényi entropy of . Analogously, we will prove the following for mY.(z, s).

Theorem 4.4.1. For v-a.e. (x,s) € Y,
lim log mY.(z, s) ~ 2log2

= 4.2
T—o0 —logT flg(,u)7 (44 )

Remark 4.4.2. The constant log 2 comes from the symbolic metric d, defined in (3.6.5) on the shift; if

ds(x,y) = ¢~ for some ¢ > 1 instead, then log?2 in the theorem above is replaced by logc. Anyhow,

Ha(p) Ho(p)

log 2 (OI” log ¢

) should be seen as the correlation dimension D(u) for the symbolic system.

Proof. We first prove the upper bound. Let 7' > 0, by (3.6.7) and Proposition [3.6.4] for all 0 < ¢1,¢5 <
T,
(Ve (2, 8), Up, (2, 8)) < Crdy (U4, (2, 8), Ut (2, 8)).

By definition of d,, for all (z, s), (y,t) € Yy,

dy((d?, 5)7 (y’t)) < min {dx‘i(xv y),ds(az,y), ds(ay,x)} )
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which implies that my, 71s)+1(x) < m}.(z, s), where my(z) takes the shortest symbolic distance with

respect to d; between iterates of x up to time k. As d;s(z,y) = 27*"Y, — M} (z) log 2 = log my(z) so

My(e 1+5)+1(7)log 2 log k(x,s + T) -, log my (z, )
logk(z,s +T) logT = —logT

By (4.4.1) and Theorem there exists an intersection S of conull set§’] such that every = € S in

the intersection has

My(eT1s log k(x, T
lim k(e T+ )—H(I) = and lim oeML, ST o) (z,5+T)

= =1. 4.3
n—oo logk(x,s+T) Hy(p) T—o0 logT (4.4.3)

Hence for v-a.e. (z,s),
Y
Jim sup logmy(x,s) < 2log 2 .
T — —logT Hy(p)

Now for the lower bound, for each (z,s) € Y, and T' > 0, there is

my(z,s) = min {dy (U, (z,5), Uy, (2,8)) : t1 < ta < T}

< min {dy ((ak(z’5+t1):c, 0) , (ok(z’t2+s):c, 0)) ity <to < T, k(x,t1 4+ 8) # k(x, ty + s)}

< ¢, min {ds (Jk(x’Sthl)x,Jk(z’t2+s)x> ity <to < T, k(x,t1 + 8) # k(x, tg + 5)} = 2 Mi(a s+m) ()
Again, taking x from the intersection of the conull sets as in (4.4.3), for v-a.e (z,s) € Y,,,

Y
i inf logmzy(z, s) > 2log 2 .
T—oo  —logT Hy(p)

log m¥ (x,s)
—logT

Thus, we have shown that for v-almost every (z,t) in the suspension flow Y, limy_,

2log 2
Ha(p)*

orem and Theorem|4.3.4|may be proved for flows with some asymptotic independence properties,

This is just an example to demonstrate that the almost sure result for interval maps as in The-

for example, the class of flows discussed in Section [3.6

4A set is conull if its complement has zero measure
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