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Abstract

A goal of ergodic theory is to understand the stochastic behaviours of deterministic systems. Given

a measure preserving system (X, f, µ), decay of correlations ensures that for reasonable ω : X → R,

(ω (fnx))n∈N asymptotically behaves like an i.i.d. process and results analogous to classical probabil-

istic theorems for i.i.d. sequences can be proved.

Decay rates for uniformly hyperbolic maps are often exponential whereas non-uniformly hyperbolic

systems can have troublesome rates, e.g. subexponential or polynomial. A common approach to study

decay of correlations is via the corresponding symbolic space, which admits the same rate of mixing.

Since non-uniformly hyperbolic systems are often modelled by countable Markov shifts which are non-

compact, it requires a more exhausting machinery to prove analogous statements for finite shifts.

This thesis will first review some thermodynamic results for subshifts of finite types (SFT) and count-

able Markov shifts (CMS) then focus on CMS with strong positive recurrence (SPR), a property shown

to be equivalent to the spectral gap property, which guarantees exponential mixing rates and other

desirable features. For CMS satisfying certain topological boundary conditions, we will show that SPR

is characterised by the ergodic averages over periodic orbits. Examples are provided to demonstrate

that our condition is rather weak.

In Chapters 3 and 4, we prove two sets of almost sure results using the Borel-Cantelli lemmas for fast

mixing systems. Firstly, we show that the asymptotics of the cover times are almost surely quantified

by the Minkowski dimensions, which dictate the growth of hitting times to geometrically small sets.

The second set of theorems shows that for a point in a topological Markov shift, the length of the

longest matching substrings grows exponentially depending on the Rényi entropy of the Gibbs measure.

Such quantitative results extend analogously to the shortest distance problem for interval maps.
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Notation and abbreviations

Here is a list of notation used in this thesis.

• For E a set in some topological space, let #E denote the cardinality of E, and 1E the indicator

function of E.

• The union of natural numbers with {0} is denoted by N0.

• For a dynamical system f defined on a metric space (X, d), let C(X) be the set of continuous

real-valued functions and Mf denotes the set of f -invariant probability measures.

• For two collections P,Q of subsets in (X, d), let P ∨Q : {P ∩Q : P ∈ P, Q ∈ Q} .

• When there is no confusion of the dynamics in question, the measure-theoretic entropy of a

measure ν is denoted by h(ν).

• The open ball centred at x with radius r > 0 is denoted by B(x, r).

• The floor and ceiling functions, ⌊x⌋ takes the largest integer ≤ x and ⌈x⌉ takes the smallest integer

≥ x.

• For real numbers a, b, c, we write a = b± c if a ∈ [b− c, b+ c].

• For two real positive sequences {an}n, {bn}n, write ak ≈ bk if log ak − log bk is bounded, or

equivalently the ratio
∣∣∣ak

bk

∣∣∣ is uniformly bounded away from 0 and +∞.

Say ak ⪯ bk if there is {ck}k such that ak ≤ ck for all k, and bk ≈ ck. Both relations are transitive,

and if bk is summable, ak ⪯ bk, then ak is summable.

• For any function g : X → R on the ambient space (X, d), let E[g] and Var[g] denote the expecta-

tion and variance of g respectively, when the relevant probability measure is clear.

The constants of the form Ci, or Kj used in the proofs in a given chapter are not inherited in later

chapters, unless specified.

The following abbreviations are commonly used.

• acip: invariant probability measure absolute continuous with respect to Lebesgue measure;
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• BIP: big image and preimage property;

• CI: contraction at infinity;

• CLT: central limit theorem;

• CMS: countable Markov shift;

• i.i.d. : independent, identically distributed;

• SGP: spectral gap property;

• SPR: strong positive recurrent;

• SFT: subshift of finite type;

• UCS: uniform contraction structure;



Chapter 1

Preliminaries

In order to understand the statistical behaviour of a dynamical system, we often study its invariant

measures. There are various notions of chaotic and stochastic phenomena, but a measure’s decay

of correlations, or equivalently the mixing properties (these two terms will be used interchangeably

throughout), is of central focus among plenty other measure theoretic properties. Given (X, d) a metric

space and (f, µ) a measure preserving system on X, decay of correlations ensures that for a large

class of observables ω : X → R, the sequence (ω (fnx))n∈N in the long run asymptotically resembles

an independent, identically distributed process. If the rate of decorrelation is sufficiently fast, one

can prove various results analogous to classical probabilistic theorems for sequence of i.i.d. random

variables, e.g. the Law of Large Numbers, the Central Limit Theorem, etc. Moreover, the analysis gets

particularly interesting when the observables are chosen to reflect some geometric behaviour of the

system. For example, the observable evaluated at each {f jx}j∈N can decay with the distance either to

a reference point x̃ ∈ X, or to the initial position. The analysis of minimal times for such observable

to reach some threshold value is referred to as the hitting time or return time problem respectively, and

so far we know their asymptotic behaviours are closely dependent on the rates of decorrelation.

A wide range of uniformly hyperbolic systems are well understood today in terms of their statistical and

stochastic properties. In particular, they very often enjoy exponential decay of correlations, whereas

the non-uniformly counterparts are more difficult to handle, e.g. subexponential or polynomial rates.

However, we can often associate a symbolic shift model to the systems in question, and analyse the

invariant measures. Generally speaking, the symbolic system with the relevant measure admits the

same rate of mixing as the original mapping although the relevant functional spaces may be different.

The study of symbolic shifts has a relatively long history compared to that of thermodynamic formalism

13
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of dynamical systems, and has been playing a crucial role in other research areas such as stochastic

processes, graph theory, logic, etc. In this thesis all shifts are assumed to be Markovian, in the sense

that the image of a partition set under the shift map is always a countable union of other partition sets;

some non-Markovian shifts, e.g. the β-shifts, also have a sophisticated and well-developed theory but

will not be discussed.

The thermodynamic formalism of finite topological Markov shifts is very well understood in terms of

Gibbs measures, equilibrium states and decay of correlations. These results are nicely summarised

and organised in [Bow]. Since non-uniformly hyperbolic systems are often modelled by countable

Markov shifts which are non-compact metric spaces, it requires a more exhausting machinery to prove

analogous statements for finite shifts. However, if one can show that the transfer operator associated

to some potential acts on a Banach space of functions with spectral gaps, then exponential rates of

decay of correlations are expected. That is to say, the job reduces to, in some sense, finding necessary

and sufficient conditions for the existence of such a spectral gap. Important results for Markov shifts

with a countable alphabet have been proved in the last thirty years due to Aaronson, Denker, Mauldin,

Sarig, Úrbanski and many others. In this chapter we will do a quick review of some selected results

from their works. Since many properties (especially those we care about in this thesis) of two-sided

shifts can be reduced to one-sided shifts on N0, we restrict our discussion to this case.

1.1 Subshifts of finite type and mixing conditions
Let us start with subshifts of finite type. Let A be a finite alphabet, and M be an A × A transition

matrix of 0, 1 entries. The associated topological Markov (sub)shift space, denoted by Σ, is defined by

Σ :=
{
x = (x0, x1, . . . ) ∈ AN0 :Mxj ,xj+1 = 1 for all j ∈ N0

}
,

where Mi,j is the (i, j)−entry of the matrix M . The dynamics on Σ is the left shift σ : Σ → Σ, given by

(σx)i = xi+1, for all i ≥ 0. The triplet (Σ,A,M) is called a subshift of finite type (SFT). Denote the set

of probability measures on Σ by M(Σ) and the set of σ-invariant measures by Mσ.

A word of length n w is allowable if Mwj ,wj+1
= 1 for j = 0, . . . , n − 2. Let Σn denote all allowable

words of length n, and Σ∗ :=
⋃

n≥1 Σn the set of all finite allowable words. Similarly, let Cn denote

the set of all non-empty n-cylinders and Fn the sigma-algebra generated by Cn.

Definition 1.1.1. The measure theoretic entropy of µ of the subshift, denoted by h(µ), is given by

h(µ) = lim
n→∞

−
∑
C∈Cn

µ(C) log(µ(C)). (1.1.1)
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The shift space is equipped with a symbolic metric, ds : Σ× Σ → R, given by

ds(x, y) = 2−|x∧y|, where x ∧ y := inf {k ≥ 0 : xk ̸= yk} . (1.1.2)

Note that since #A <∞, the metric space (Σ, ds) is compact.

Definition 1.1.2. An n-cylinder in Σ is a collection of points such that they agree on the first n symbols,

denoted by square brackets, i.e.,

[x0, . . . , xn−1] := {y ∈ Σ : y0 = x0, . . . , yn−1 = xn−1} .

Cylinders are precisely the open balls in Σ with respect to the metric ds. The 1-cylinders {[a] : a ∈ A}

are called partition sets, and the symbolic systems studied in this thesis are Markov in the sense that the

image of each partition sets under σ is a (countable) union of partition sets. Examples of non-Markov

symbolic systems include Sturmian shifts, β-transformations, etc.

Definition 1.1.3. Σ is topologically transitive if for all a, b ∈ A, there existsNab such that σ−Nab [b]∩[a] ̸=

∅, and topologically mixing if for all n ≥ Nab, σ−n[b] ∩ [a] ̸= ∅. For each pair a, b ∈ A, Nab can be

different.

Topological transitivity can be upgraded to topological mixing if there are coprime periodic orbits.

Proposition 1.1.4. A topologically transitive Markov shift is topologically mixing if and only if there exist

p, q coprime and periodic points x, y ∈ Σ such that x = σpx, y = σqy.

Proof. Suppose Σ is topologically mixing and fix a ∈ A. Then by definition there exists n ≥ Na and

x, y ∈ [a] such that σnx = x and σn+1y = y.

Now suppose the Σ contains x, y periodic points with periods p, q coprime. Let a, b ∈ A, by topological

transitivity, there exists Nax0 , Nxp−1y0 , Nyq−1b ≥ 1 such that

[a] ∩ σ−Nax0 [x0], [xp−1] ∩ σ−Nxp−1y0 [y0], [yq−1] ∩ σ−Nyq−1b [b] ̸= ∅.

The largest integer that cannot be written as a sum of positive multiples of p, q is (p− 1)(q− 1)− 1, so

set

Nab = Nax0
+Nxp−1y0

+Nyq−1b + (p− 1)(q − 1),

then for all j ≥ Nab, [a] ∩ σ−j [b] ̸= ∅. As a, b are arbitrary, this proves topological mixing.

These definitions can be compared to more general versions in topological dynamical systems lan-

guage. For interval maps, transitivity roughly means there do not exist two non-empty subsets in the
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interval with disjoint interiors that never talk to each other under the dynamics. Topological transit-

ivity guarantees a list of chaotic properties, e.g. the set of periodic points of the mapping is dense in

the interval. Topological mixing implies that for any two open sets, after some finite time evolution

their images always intersect, while the more important question is how fast and what proportion of

the sets are saturated. Suppose µ is a shift invariant measure, the following measure-theoretic notions

of mixing approximate the notion of independence.

Definition 1.1.5 (Mixing conditions). Let µ be a shift invariant measure on Σ, it is said to be one of the

following if for all n,m, k ∈ N and E ∈ Fn, F ∈ Fm,

• weakly-mixing:
∣∣µ (E ∩ σ−n−kF

)
− µ(E)µ(F )

∣∣→ 0 as k → ∞;

• α-mixing:
∣∣µ (E ∩ σ−n−kF

)
− µ(E)µ(F )

∣∣ ≤ α(k) for some α : N0 → R strictly decreasing;

• ϕ-mixing:
∣∣µ (E ∩ σ−n−kF

)
− µ(E)µ(F )

∣∣ ≤ ϕ(k)µ(E) for some ϕ : N0 → R strictly decreasing;

• ψ-mixing:
∣∣µ (E ∩ σ−n−kF

)
− µ(E)µ(F )

∣∣ ≤ ψ(k)µ(E)µ(F ) for some ψ : N0 → R strictly decreas-

ing.

It is obvious that ψ-mixing =⇒ ϕ-mixing =⇒ α-mixing =⇒ weakly mixing =⇒ ergodic. See

[Bra] for more detailed discussion on mixing conditions. We will focus on systems with ψ-mixing

in Chapter 3 and Chapter 4, as it is a powerful mixing condition: (1) it implies the following quasi-

Bernoulli property, i.e., for all w, v ∈ Σ∗, µ being ψ-mixing implies there exists B = 1 + ψ(0) > 1 such

that

µ([wv]) ≤ Bµ([w])µ([v]), (1.1.3)

and (2) it guarantees that the measure of an arbitrary n-cylinder decays exponentially in n.

Lemma 1.1.6. [GalSch] If the probability measure µ is ψ-mixing with ψ(·) summable, there exist con-

stants β ∈ (0, 1) and K0 > 0 such that µ(C) ≤ K0β
n for all C ∈ Cn and all n.

Remark 1.1.7. The statement of the lemma holds when A is countably infinite as well, as the original

proof given in [GalSch] does not exploit the finiteness of the alphabet.

1.2 Equilibrium and Gibbs states for subshifts of finite type
Given a dynamical system, it is common that the system admits many, even infinitely many, invariant

or ergodic measures, and since statistical behaviours depend on the measure, which measure should

we choose to analyse the system? A natural answer is ‘equilibrium states’. In statistical mechanics,

equilibrium states are described by probability measures on topological spaces that are characterised
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by variational principles, maximising entropy (or the sum of entropy and an energy-like quantity).

In some sense [Kel2, §1], equilibrium states should be viewed as an object on both microscopic and

macroscopic scales: by invariance, equilibrium states allow one to predict the configuration of an item

in the topological space for all future times, however since the number of microscopic sites are too

many or simply (uncountably) infinite, we focus on the macroscopic information.

For topological shifts, an obvious question is whether the system admits equilibrium states, in such case

the sum of entropy with some thermodynamic potential is minimised or maximised. Precise definitions

are given below, starting from the pressure function.

A real-valued function ϕ : Σ → R is called a potential. Denote the set of continuous potentials on Σ by

C(Σ). Two potentials ϕ, ϕ′ are called cohomologous if there is u ∈ C(Σ) such that for all x ∈ Σ,

ϕ′(x) = ϕ(x)− u(x) + u(σx).

If one of ϕ, ϕ′ is a constant function then both of them are called coboundaries. For topologically trans-

itive topological Markov shifts, two potentials are cohomologous if and only if the Birkhoff averages of

all periodic points coincide.

Definition 1.2.1. Let Snϕ(x) :=
∑n−1

j=0 ϕ
(
σjx

)
denote the n-th Birkhoff sum, and define the partition

functions and the topological pressure of ϕ respectively by

Zn(ϕ) :=
∑
C∈Cn

exp

(
sup
x∈C

Snϕ(x)

)
, P (ϕ) := lim

n→∞

1

n
logZn(ϕ). (1.2.1)

By [Bow, Lemma 1.20], P (ϕ) exists for all continuous ϕ. In other words, while topological entropy

hT = P (0) counts the asymptotic growth of cylinders of length n, the topological pressure can be

seen as its generalisation, weighted by a potential ϕ. The term pressure here perhaps should not be

taken literally: here P (ϕ) is minus the usual value of pressure in statistical mechanics known to most

physicists. It should also be stressed that, for each given ϕ, P (ϕ) depends only depends on the Borel

structure of Σ and has nothing to do with the metric ds.

To guarantee the value of P (ϕ) exists, ϕ is often assumed to behave reasonably regular, i.e., continuous

with respect to ds and its variations are not extreme.

Definition 1.2.2. Let vark(ϕ) := sup {|ϕ(x)− ϕ(y)| : xj = yj , for all 0 ≤ j ≤ k − 1} denote the k-th

variation of ϕ, then ϕ is called Hölder or θ-Hölder if there exists cϕ > 0 and θ ∈ (0, 1) such that vark(ϕ) ≤

cϕθ
k for all k ∈ N0.

Furthermore, P (ϕ) satisfies the Variational Principle.
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Theorem 1.2.3 (Variational Principle). [Bow, §2.17]

P (ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈ Mσ

}
, (1.2.2)

where h(ν) denotes the measure-theoretic entropy defined in (1.1.1).

In comparison to (1.2.1), the Variational Principle does not require any time-evolution information

apart from invariance under the dynamics. Now it makes sense to ask if there are invariant measures

realising this supremum.

Definition 1.2.4. Given ϕ : Σ → R continuous, a measure µ ∈ Mσ is called an equilibrium state if

h(µ) +
∫
ϕdµ = P (ϕ).

The statistical properties of possible equilibrium states is closely related to the properties of the Ruelle

operator associated to ϕ, or often called the transfer operator, defined by

Lϕ : C(Σ) → C(Σ), Lϕf(x) =
∑

y∈σ−1x

eϕ(y)f(y), (1.2.3)

and its iterates satisfy Ln
ϕf(x) =

∑
y∈σ−nx e

Snϕ(y)f(y) for all integers n ≥ 1. For any µ ∈ M(Σ) and

g ∈ C(Σ),
∫
g d(L∗

ϕµ) :=
∫
(Lϕg)dµ. When there is no confusion about the potential in question, denote

Lϕ simply by L. The following theorem is a consequence of the compactness of the functional spaces

of Σ and the Schauder-Tychonoff theorem, which tells us the eigenspaces of L.

Theorem 1.2.5. [Rue1, Rue2] Let (Σ, σ) be topologically mixing and ϕ Hölder, then there exists λ > 0,

h ∈ C(Σ) and a Borel measure ν such that

Lh = λh, L∗ν = λν, ν(h) = 1, and lim
n→∞

∥∥λ−nLng − ν(g)h
∥∥
∞ = 0 for all g ∈ C(Σ).

In this case, λ = eP (ϕ).

The terms λ, h and ν are called the eigenvalue, eigenfunction and eigenmeasure of L respectively.

Another fruit from this theorem is the existence of a Gibbs measure for ϕ, which is defined below.

Definition 1.2.6. Given ϕ ∈ C(Σ), an invariant measure µ ∈ Mσ is called a Gibbs measure for ϕ if there

exists G ≥ 1 and P ∈ R such that for all n ∈ N and all C ∈ Cn, for all x ∈ C,

1

G
≤ µ(C)

exp (Snϕ(x)− nP )
≤ G. (1.2.4)

A simple example of Gibbs measure is a Bernoulli measure. Let (Σ, σ) be a fullshift on K symbols,



1.2. EQUILIBRIUM AND GIBBS STATES FOR SUBSHIFTS OF FINITE TYPE 19

Suppose p = {pk}Kk=1 is a probability vector, and for each k-cylinder [x0, . . . , xk−1],

µp ([x0, . . . , xk−1]) =

k−1∏
j=0

pxj
.

Then µp is the Gibbs measure for ϕ : x 7→ log px0
with G = 1.

It should be stressed that the Gibbs definition above is given in Bowen’s sense, and its form immedi-

ately suggests its importance from the dynamical point of view: the measure of each cylinder can be

uniformly approximated by the ergodic average of an arbitrary point in the set.

In statistical mechanics, Gibbs states are of central importance in equilibrium theory, which originated

from Boltzmann’s work on ideal gases (see [Bol]). His ideas were adapted to other physical systems

such as ferromagnets, which are often modelled by an infinite lattice, e.g. Zd. Non-rigorously speaking,

given a system S and the collection of its possible states {s1, . . . , sN}, if U(si) is the total energy of S

at state si, then the Gibbs’ rule of probability distribution satisfies

P([si]) =
e−βU(si)∑N
i=1 e

−βU(si)
,

for some constant β often referred to as inverse temperature. In comparison to topological shift, it is

useful to think of S as a lattice with sites 0, 1, . . . and each s ∈ {s1, . . . , sN} as s = (x0, x1, . . . ) which

means 0 is configurated in state x0, 1 in x1, etc.

Rigorous constructions of probability structures on infinite probability spaces of interest to us were

due to Dobrushin [Dob68], Lanford and Ruelle [LanRue] in late sixties, and also frequently referred

to as the Gibbs measure. Their method, the DLR approach, constructs a measure from the conditional

expectations over the pre-images of the sigma-algebra generated by the cylinders, that is, we care

about the distribution of the initial n symbols in a sequence conditioned on a fixed tail (xn, xn+1, . . . ).

The precise definition will be omitted here; for non-singular probability measure ν on Σ, let

ν ◦ σ(·) :=
∑
a∈A

ν (σ(· ∩ [a])) ,

then if dν
dν◦σ = λ−1 exp(ϕ) (in other words ν is ϕ-conformal Remark 2.1.3), ν is a DLR measure1. For a

topologically transitive subshift of finite type with continuous potential ϕ, Ruelle showed there exists

a DLR measure. In the early 70’s, Sinai showed that natural invariant measures for hyperbolic systems

are DLR measures. In fact, Sinai proved that for Hölder potentials, equilibrium states are obtained

from DLR states [Sin], and (1.2.4) was established by Bowen.

Theorem 1.2.7. [Bow, §1.4,Theorem 1.22] Let µ be such that dµ = hdν for h, ν in Theorem 1.2.5.

1In general however, DLR measures need not to be invariant under the dynamics
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Then µ is a σ-invariant probability measure with the Gibbs property with P = P (ϕ), and it is the unique

measure in Mσ such that h(µ) +
∫
ϕdµ = P (ϕ).

Another important property of a Gibbs measure is that it is a fast mixing equilibrium state.

Proposition 1.2.8. [Bow, Proposition 1.14] Let µ be the Gibbs measure in Theorem 1.2.7, then µ is

exponentially ψ-mixing, i.e., there exists K1 > 0 and ρ ∈ (0, 1) such that for all n,m, k ∈ N and all

E ∈ Cn, F ∈ Cm, ∣∣∣∣µ(E ∩ σ−n−k)

µ(E)µ(F )
− 1

∣∣∣∣ ≤ K1ρ
k.

The Gibbs measure µ also verifies a version of the Central Limit Theorem [Rat], which is beyond the

scope of discussion here.

Remark 1.2.9. In this section, the existence of an eigenmeasure for subshifts of finite type is due to the

compactness of (Σ, σ), but for Markov shifts on countable alphabets those arguments may fail; instead,

existence and construction of a solution to L∗ν = λν are given by a limiting procedure that produces a

sequence of tight measures.

1.3 Sarig’s theorems for Gibbs measures for countable Markov

shifts

Suppose A is countably infinite (without loss of generality we can assume A = N), and everything else

remains the same, then the triplet (Σ,A, σ) is called a countable Markov (sub)shift (CMS) and (Σ, ds)

is no longer compact. As a result, Theorem 1.2.5 may even fail for ϕ = 0 (see [Gur1]). Therefore,

in order to obtain a Gibbs equilibrium state, we need to put other restrictions on the system so that

(Σ, σ, ϕ) behaves like a SFT. We will recall the results regarding the entropy, equilibrium states and

Gibbs states by Aaronson, Denker [AD], Gurevich [Gur2], Gurevich and Savchenko [GurSav], Mauldin

and Urbański [MU] and many others. Their results lead to Sarig’s work [Sar1], [Sar5] which developed

a set of theorems regarding equilibrium states, the Variational Principle and characterisations of the

existence and uniqueness for Gibbs measures for CMS.

First, note that the Hölder condition in the finite alphabet case is too strong in the CMS setting, e.g. a

potential needs to be bounded from below in order to be Hölder, but only potentials unbounded from

below can have finite pressure for CMS. Hence, we need some other notion of regularity of potentials

for the countable alphabet case.

Definition 1.3.1. A potential ϕ is said to be of summable variations if
∑

k≥2 vark(ϕ) < ∞, weakly

Hölder (or weakly θ-Hölder) if there exists cϕ > 0 and θ ∈ (0, 1) such that vark(ϕ) ≤ cϕθ
k for all k ≥ 2,
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and locally Hölder if the previous inequality holds, also for k = 1.

Next, the definition of Zn(ϕ) in (1.2.1) needs to be modified since for each n there may be infinitely

many cylinders of depth n and the sum may easily blow up to infinity, hence Sarig introduced a new

version of pressure in [Sar1].

Definition 1.3.2. Let a ∈ A and set Zn(ϕ, a) :=
∑

σnx=x 1[a](x) exp (Snϕ(x)), define the Gurevich

pressure of ϕ by

PG(ϕ) := lim
n→∞

1

n
logZn(ϕ, a). (1.3.1)

This quantity, introduced by Sarig [Sar1], is a generalisation of Gurevich entropy which is a special

case of pressure for ϕ = 0. For topologically mixing CMS, by [Sar1, Theorem 1] it is independent of

the choice of initial symbol a ∈ A, and invariant under cohomology i.e., for all ϕ′ cohomologous to ϕ,

P (ϕ) = P (ϕ′). Similar to the Variational Principle for SFT, the Gurevich pressure for CMS can also be

expressed as a supremum.

Theorem 1.3.3. [Sar1, Theorem 2, Corollary 1, Theorem 3],[IJT, Theorem 2.10]2 Let (Σ, σ, ϕ) be topo-

logically mixing and ϕ of summable variations, then

PG(ϕ) = sup {P (ϕ|Y ) : Y ⊆ Σ a topologically mixing finite Markov shift}

= sup
{
P (ϕ|Y ) : Y ⊆ Σ compact and σ−1Y = Y

}
= sup

{
h(ν) +

∫
ϕdν : ν ∈ Mσ,

∫
ϕdν > −∞

}
= sup

{
h(ν) +

∫
ϕdν : ν ∈ Mσ, and −

∫
min{ϕ, 0} dν <∞

}
,

where P (ϕ|Y ) denotes the pressure of the restriction ϕ over the compact space Y . In addition, if ∥L1∥∞ <

∞, then PG(ϕ) <∞.

Just as the finite alphabet case, PG(ϕ) only depends on the structure of the periodic points not on the

metric, so the Gurevich pressure can be viewed as the topological pressure of (Σ, σ, ϕ). We will simply

write P (ϕ) from now on.

Definition 1.3.4. We say (Σ, σ) has the big image property, if there exists a finite set B ⊂ A such that

for all a ∈ A, there is b ∈ B such that [ab] ̸= ∅. Furthermore, (Σ, σ) has the big image and preimage

property, BIP for short, if there exists a finite set B ⊂ A such that for all a ∈ A, there are b1, b2 ∈ B such

that [b1ab2] ̸= ∅.

2The statements are proved in [Sar1] under stronger regularities on potentials but the proofs hold under summable variation
assumption. See [IJT].
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This is a combinatorial property and is equivalent to the finite primitivity notion in [MU]. CMS with

the BIP property behaves like subshifts of finite type in different ways, e.g.

Proposition 1.3.5. [Sar5, Corollary 1] If the BIP condition holds,

P (ϕ) = lim
n→∞

1

n
log

∑
σnx=x

exp (Snϕ(x)) .

Moreover, Gibbs measures for locally Hölder potentials are characterised by the BIP property.

Theorem 1.3.6. Let Σ be a topologically mixing CMS and ϕ a locally Hölder3 potential. There exists an

invariant Gibbs measure if and only if Σ has the BIP property and P (ϕ) <∞.

As in Theorem 1.2.5, Gibbs measures, when they exist, are constructed from the eigenfunction h and

the eigenmeasure ν of the transfer operator L associated to ϕ, given by the generalised Ruelle–Perron–Frobenius

theorem (see Theorem 2.1.2 in the next chapter), i.e., dµ = hdν. By [Sar1, Remark 3] this measure

is unique up to multiplicative constant, and by [Sar1, Theorem 7] such a µ realises the supremum in

Theorem 1.3.3 and if supϕ < ∞, it is the unique invariant equilibrium state [BS, Theorem 1]. How-

ever, there remains the caveat that an invariant measure m verifies the Gibbs property (1.2.4) with

respect to a potential ϕ whilst
∫
ϕdm = −∞, in which case the notion of equilibrium does not make

sense.

Here, we prove that, just as in the SFT case, Gibbs measures for CMS are ψ-mixing. This was referred

to as the continued fraction mixing property in terms of return-time processes for a measurable set in

[ADU], and proved for Markov-fibred systems with the Schweiger property. The original proof was

long and heavy since it was aiming for more general settings, so a shorter version using the transfer

operator is provided here for CMS.

Lemma 1.3.7. Under the conditions of Theorem 1.3.6, for µ the Gibbs measure with respect to a locally

Hölder potential ϕ, µ is exponentially ψ-mixing.

Proof. By [Sar1, Theorem 4, Theorem 8], dµ = hdν and for λ = eP (ϕ), L∗ν = λν and Lh = λh.

Firstly, by the locally Hölder property of ϕ, there is M1 > 0 such that∣∣∣eSnϕ(x)−Snϕ(y) − 1
∣∣∣ ≤M1d(x, y) (1.3.2)

whenever x, y are in the same partition set.

3for existence of Gibbs measures, this can be relaxed to
∑

k≥1 vark(ϕ) < ∞ [Sar5, Theorem 1], but not for exponentially
mixing properties.
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Also, by the Gibbs property there is M2 > 0 such that for each n-cylinder C ∈ Cn, for all x ∈ C,

M−1
2 λ−neSnϕ(x) ≤ µ(C) ≤M2λ

−neSnϕ(x). (1.3.3)

Now define the norm (see [Sar1]) for a real-valued function f acting on ΣA,

∥f∥L := ∥f∥∞ +Dβf,

where β is the σ−algebra generated by {σ[a] : a ∈ A} and

Dβ := sup
b∈β

sup
x ̸=y∈b

|f(x)− f(y)|
d(x, y)

.

The operator L : Lip1,β → L where the spaces are defined by Lip1,β := {f : ΣA → R : ∥f∥1, Dβf ≤ ∞}

and L := {f : ΣA → R : ∥f∥L <∞}.

Consider E = [e0, e1, . . . , en−1] ∈ Cn and F ∈ C∗ :=
⋃

n≥1 Cn, as L∗ν = λν and µ is σ invariant,∣∣∣µ(E ∩ σ−(n+k)F )− µ(E)µ(F )
∣∣∣ = ∣∣∣µ(E ∩ σ−(n+k)F )− µ(σ−nE)µ(F )

∣∣∣
=

∣∣∣∣∫ h1E · 1F ◦ σn+k dν −
∫
h1σ−nE dν

∫
h1F dν

∣∣∣∣
≤
∣∣∣∣∫ 1F

(
λ−kLk(λ−nLn(h1E)− h

∫
h1E dν

)
dν

∣∣∣∣
≤ (inf h)−1µ(F )

∥∥∥∥λ−kLk
(
λ−nLn(h1E)

)
− h

∫
λ−nLn(h1E) dν

∥∥∥∥
L

.

where the last inequality holds because µ(F ) =
∫
1Fhdν and h is uniformly bounded away from 0 and

infinity [Sar1, Theorem 8]. The following Lasota-Yorke type inequality holds under our assumptions

(see for example [AD, Theorem 1.6] or [Sar5, Corollary 3]): there are Kϕ > 0 and κ ∈ (0, 1) such that∥∥∥∥λ−kLk(λ−nLn (h1E))− h

∫
λ−nLn(h1E) dν

∥∥∥∥
L

≤ Kϕκ
k∥λ−nLn(h1E)∥L. (1.3.4)

+Claim. ∥λ−nLn(h1E)∥L ≤M3µ(E) for some M3 > 0.

Proof of claim. It is easy to see for each E ∈ Cn and x ∈ ΣA, there is only one z ∈ E = [e0, e1, . . . , en−1]

such that σnz = x, i.e.,

z = (e0, . . . , en−1, x0, x1, . . . ),

hence by (1.3.3), for all x,

λ−nLn(h1E)(x) =
∑

σny=x

eSnϕ(y)−nP (ϕ)(h1E)(y) ≤ h(z)eSnϕ(z)−nP (ϕ) ≤M2∥h∥∞µ(E),
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and for x, y ∈ [b] ∈ β, for z, w ∈ E allowable with σnz = x and σnw = y.

λ−n |Ln(h1E)(x)− Ln(h1E)(y)| = λ−n
∣∣∣eSnϕ(z)h(z)− eSnϕ(w)h(w)

∣∣∣
≤ λ−n

(∣∣∣eSnϕ(z)h(z)− h(z)eSnϕ(w)
∣∣∣+ ∣∣∣h(z)eSnϕ(w) − h(w)eSnϕ(w)

∣∣∣)
≤ |h(z)|M2µ(E)

∣∣∣1− eSnϕ(w)−Snϕ(z)
∣∣∣+M2µ(E)|h(w)|

∣∣∣∣1− h(z)

h(w)

∣∣∣∣ .
By the locally Hölder property of log h and h (see [Sar1, §5]) and (1.3.2)(1.3.3), since by construction

d(z, w) = 2−nd(x, y), the inequality above can be bounded by ∥h∥∞M3µ(E)d(x, y) for some constant

M3 > 0.

The proof of lemma follows from the claim.

4

We will prove two sets of limit theorems for asymptotic cover times and substring matching lengths

in Chapter 3 and Chapter 4 respectively, for systems that are exponentially ψ-mixing in which case

Gibbs measures become a natural candidate. For all systems that admit a Gibbs measure, the relevant

potential has to have finite 1−variation, whereas the formalism of equilibrium states for CMS gets more

interesting once the potentials are allowed to have weaker regularities. In summable variations or

weakly Hölder cases, the potential can be unbounded with var1(ϕ) = ∞, as a consequence equilibrium

states may not (1) be exponentially mixing, or (2) be unique, or (3) even exist, depending on the

recurrent properties of (Σ, ϕ). If a CMS does not have a Gibbs measure, the next best we can hope for

that is close to the i.i.d. case, is strong positively recurrent (SPR). In this case, the system often admits

an equilibrium state with exponential decay of correlations. The main goal of the next chapter is to

find sufficient and necessary conditions for countable Markov shifts to be SPR.

4I am not sure if the locally Hölder condition in the lemma above can be relaxed to
∑

k≥1 vark(ϕ) < ∞ since the Lasota-Yorke
type inequality (1.3.4) may depend on the locally Hölder property of ϕ.



Chapter 2

Strong positive recurrence

In the study of dynamical systems, an invariant ergodic measure with exponential decay of correlations

is highly desirable with a simple motivation: the values of a reasonable observable along the orbit of a

typical point behaves like a sequence of i.i.d. random variables and we have a rich collection of tools

and theorems to deal with such sequences from classical probability theory. For uniformly hyperbolic

systems with some mild assumptions, an equilibrium state with exponential rate of decay of correla-

tion can be shown to exist, but that is often not the case for non-uniformly hyperbolic maps, unless we

have some extra information e.g. the behaviour of Lyapunov exponents at a particular set of points.

For example, in the literature of unimodal maps, many of them demonstrate non-uniform hyperbolicity

for the geometric potential − log |DT |. Moreover, for S−unimodal maps the Collet-Eckmann condition,

which regulates the geometric behaviour of the image of the non-flat critical point, can be proved equi-

valent to a uniform lower bound of Lyapunov exponents for all periodic points, and further equivalent

to the existence of an acip for some renormalisation of T with exponential decay rate of correlations

[NS]. For more general non-geometric potentials, e.g. Hölder potentials, a list of conditions (see Sec-

tion 2.4 below) that guarantee existence of equilibrium states have been studied since the end of 90s,

and in most cases the measures in question have exponentially mixing properties.

A standard approach to prove that a Markov dynamical system has certain rate of decay of correlations

is to show that the corresponding symbolic shift has the same rate of mixing. In symbolic dynamics,

non-uniform hyperbolicity commonly arises from a countable alphabet. We will first review some

important results of CMS regarding the modes of recurrences, with a particular focus on the notion

of strong positive recurrence which is often equivalent to the spectral gap property. The new results in

this chapter are based on ideas and results in [TZ], where a new characterisation of SPR for countable

25
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Markov shifts is given based on some controlled boundary behaviours.

2.1 Modes of recurrences
Let (Σ,A, σ, ϕ) be a topologically transitive countable Markov shift and ϕ ∈ SV, where SV is the set

of potentials of summable variations, i.e.,
∑

k≥2 vark(ϕ) <∞. The following definitions are frequently

used by Sarig in his series of works [Sar1, Sar2, Sar3].

Definition 2.1.1. Fix a ∈ A and define the return time function with respect to a by φa(x) := 1a(x) inf{j ≥

1 : xj = a}, and

Z∗
n(ϕ, a) :=

∑
σnx=x

eSnϕ(x)1{φa=n}(x). (2.1.1)

A potential ϕ on Σ is called

• recurrent if
∑

n≥1 e
−nP (ϕ)Zn(ϕ, a) diverges, and transient if it converges.

• positively recurrent if is it recurrent with
∑

n≥1 ne
−nP (ϕ)Z∗

n(ϕ, x) < ∞, and null-recurrent if this

sum diverges.

The word ‘recurrent’ in definition above reflects the fact that the sums are taken over periodic orbits,

and these quantities do not depend on the state a ∈ A for any topologically transitive CMS. The

roots of recurrence properties can be found in Vere-Jones’ work on Markov chains [VJ]. Heuristically

speaking, a recurrent process implies the Markov chain returns to its starting state eventually while

positive recurrence says this happens relatively fast; in comparison, for countable Markov shifts these

notions are reflected by the behaviours of ergodic sums of periodic points.

Recurrence modes of ϕ govern the behaviour of equilibrium states (or RPF measures, in case it does

not make sense to talk about equilibrium states, e.g. when the measure-theoretic entropy h(ν) = ∞

and
∫
ϕdν = −∞) in the following sense.

Theorem 2.1.2. [Sar2],[Sar3, Theorem 2] Let Σ be a topologically mixing CMS and ϕ a potential of

summable variations with P (ϕ) < ∞. Then ϕ is recurrent if and only if there exists a conservative1

measure ν, finite and positive on cylinder sets, and a positive continuous function h such that L∗ν =

eP (ϕ)ν, Lh = eP (ϕ)h, and there exists {an}n increasing such that an ≍
∫
[a]
hdν

∑n
k=1 e

−kP (ϕ)Zk(ϕ, a) for

all a ∈ A, and for for every cylinder set C and x ∈ Σ,

1

an

n∑
k=1

e−kP (ϕ)
(
Lk1C

)
(x) −−−−→

n→∞
h(x)ν(C).

In addition,
1A measure is conservative if all wandering sets, i.e., its backward iterates are disjoint, have zero measure.
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• if ϕ is positively recurrent then
∫
hdν < ∞, so without loss of generality we can assume

∫
hdν = 1,

and for every cylinder set C, e−nP (ϕ)Ln1C → hν(C)/
∫
hdν uniformly on compact subsets,

• if ϕ is null recurrent,
∫
hdν = ∞, an = o(n) and for every cylinder set C, e−nP (ϕ)Ln1C → 0

uniformly on cylinders.

In the theorem above, h is bounded away from 0 and infinity on [a] for each a ∈ A, and ν, h are unique

up to multiplicative constants.

Remark 2.1.3. We also refer to the eigenmeasure of L associated to a potential ϕ with P (ϕ) = 0 as the

conformal measure of ϕ which has the following property: for E ⊂ Σ such that σn : E → σn(E) is

injective,

ν (σn(E)) =

∫
E

e−Snϕ(x)dν(x).

To sum up, if the system is null recurrent then there is an infinite RPF measure, whereas positive recur-

rence is a happier situation since the RPF measure is a finite equilibrium state so up to normalisation

one can assume it is a probability measure. If additionally supϕ < ∞, such an equilibrium state is

unique (see [BS]). However, in none of these cases we are able to confidently say at what rates the

correlations between two continuous functions decay with respect to the equilibrium dµ = hdν e.g.

under positive recurrence, the equilibrium can be exponentially mixing or sub-exponentially mixing

[Sar4]. This is addressed in the following section.

2.2 Inducing schemes and strong positive recurrence (SPR)
Here we recall some basics of the inducing process in the context of countable Markov shifts. For any

finite alloable word w, let |w| denote its length. Fix a ∈ A, the a-induced alphabet is

Aa := {[w] : w ∈ Σ∗, |w| ≥ 1, [w, a] ̸= ∅ and wj = a iff j = 0} . (2.2.1)

The induced shift space is Xa := AN0
a , define the natural projection π : Xa → Σ by π ([a0], [a1], . . . ) =

(a0, a1, . . . ). The induced shift system is then (Xa, σ, ϕ) where

π ◦ σ = σφa ◦ π, and ϕ =

φa−1∑
j=0

ϕ ◦ σj

 ◦ π

Inducing schemes are always full-shifts on Aa, and problems arising in the original system (Σ,A, ϕ)

due to extreme variations of ϕ on partition sets may disappear since varn
(
Snϕ

)
≤
∑

k≥2 vark(ϕ). In

particular, if ϕ is weakly Hölder then ϕ is locally Hölder, and the limit P (ϕ) := limn→∞
1
n logZn(ϕ, [a])

always exists and independent of [a] ∈ Aa [Sar3, Lemma 2], and the results concerning Gibbs measures

in § 1.3 are applicable.
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Now we introduce the following quantities defined in [Sar3]:

p∗a[ϕ] := sup
{
p ∈ R : P (ϕ+ p) <∞

}
, and ∆a[ϕ] := sup

{
P (ϕ+ p) : p < p∗a[ϕ]

}
= P

(
ϕ+ p∗a[ϕ]

)
,

where ∆a[ϕ] is called the a-discriminant and the last equality is due to [Sar3, Proposition 3], obtained

as a by-product of ∣∣∣∣∣∣P (ϕ+ p
)
− log

∑
k≥1

ekpZ∗
k(ϕ, a)

∣∣∣∣∣∣ ≤
∑
k≥2

vark(ϕ). (2.2.2)

For a topologically mixing CMS and ϕ ∈ SV with P (ϕ) < ∞, the discriminant is another indicator

reflecting the recurrence modes: ∆a[ϕ] > 0 implies positive recurrence and ∆a[ϕ] < 0 implies tran-

sience, while ∆a[ϕ] = 0 can be either positive or null recurrent [Sar3, Theorem 2]. In fact, the case

∆a[ϕ] > 0 is important enough to have earned a separate label.

Definition 2.2.1. ϕ is strong positive recurrent, SPR for short, if for some a ∈ A, ∆a[ϕ] > 0. Equival-

ently2, see for example [Cli, §8.5],

lim sup
n→∞

1

n
logZ∗

n(ϕ, a) < P (ϕ). (2.2.3)

This is a generalisation of the stable positivity notion in [GurSav], in the sense that if ϕ0 is SPR, its

positive recurrence nature remains ‘stable’ under a small perturbation by a nice potential ϕ1: if there

is an interval in which each t has P (ϕ0 + tϕ1) < ∞, then ϕ0 + tϕ1 is also positively recurrent, and

t 7→ P (ϕ0 + tϕ1) is real analytic on such an interval.

Remark 2.2.2. The notion of SPR has been applied to or generalised in other systems (perhaps non-

symbolic), see for example [RV], [GST] and [BCS2]. The key idea is that there is some gap between the

entropy or pressure at infinity and the topological pressure of the potential. In addition to exponential

decay of correlations, SPR also implies other properties of the equilibrium such as the EKP inequality

(which is proved equivalent to SPR) [RS].

Example 2.2.1 (The renewal shift). Consider the N0 × N0 transition matrix M with M00 = M0i =

Mi,i−1 = 1 for all i ∈ N and all other entries 0, i.e.,

M =


1 1 1 . . .

1 0 0 . . .

0 1 0 . . .

...
...

...
. . .


The renewal space is defined by ΣR :=

{
x ∈ NN0

0 :Mxi,xi+1
= 1
}

, and the left shift dynamics on ΣR is

2Another equivalent definition commonly used is: there exists p such that P (ϕ+ p) = 0 [PZ].
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represented by the following diagram.

0 1 2 3 · · ·

Figure 2.1: Renewal shift

Then the renewal shift system (ΣR, σ) is obviously topologically mixing but only has big preimages so

not BIP, and one can construct a conjugacy between the Bernoulli shift on {0, 1} and the renewal shift

with all preimages of 0 removed. The renewal shift is one canonical example of CMS and models the

dynamics of many interval maps with non-uniform hyperbolicity.

Let ϕ : ΣR → R be a potential of summable variations, P (ϕ) ≤ log ∥Lϕ1∥∞ ≤ log
(
2esupϕ

)
. Let (ΣR, ϕ)

be the induced shift on state 0. Note that for all n, Z∗
n(ϕ, 0) = exp

(
ϕ(x)

)
where x = ([an], [an], . . . ),

and an is the n-length word 0, n− 1, . . . , 1, so p∗0[ϕ] = − lim supn
1
nϕ(an, an, . . . ).

If ϕ is positively recurrent and supϕ < ∞, it admits a unique equilibrium state [PZ, Proposition 2.6];

if also we have ϕ weakly-Hölder, by [Sar3, Theorem 5] there exists βc such that

• 0 < β < βc: βϕ is strong positive recurrent with P (βϕ) real analytic in β, continuous but not

analytic at βc with P (βcϕ) <∞.

• βc < β <∞: βϕ is transient and P (βϕ) is linear in β.

So for renewal shifts, the one parameter family of {βϕ}β has a phase transition at βc. For interval maps

T : X → X that are conjugate to renewal shifts e.g. Manneville-Pomeau maps, this theorem implies

that if the lifted potential of − log |DT | to ΣR has finite pressure, then for some t ≤ 1, −t log |DT | has

a unique equilibrium which is absolutely continuous with respect to Lebesgue, for t in some interval

(0, tc) [Sar3, Proposition 1].

2.3 The spectral gap property (SGP)
Now we turn to the discussion of the spectral gap property. Recall that the transfer operator L = Lϕ

associated with ϕ is defined by Lf(x) =
∑

σy=x e
ϕ(y)f(y). Under mild conditions, if L acts on a nice

Banach space B with a spectral gap (defined below) then a finite equilibrium measure exists and enjoys

many desirable mixing properties (see for example [Bal]).

Definition 2.3.1 (Spectral Gap Property (SGP)). Suppose ϕ : Σ → R is weakly θ-Hölder and P (ϕ) <∞.

Then we say ϕ has the spectral gap property (SGP) if there is a Banach space (B, ∥ · ∥B) of continuous

functions on Σ such that
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(a) B ⊂ dom(L) and {1C : C ∈ Cn, n ∈ N} ⊂ B, where Cn is the collection of n-cylinders and

dom(L) :=

{
f : Σ → R : Lf(x) =

∑
σy=x

eϕ(y)f(y) converges for all x ∈ Σ

}
.

(b) f ∈ B implies |f | ∈ B and ∥f∥B ≤ ∥|f |∥B,

(c) convergence in ∥ · ∥B implies uniform convergence on cylinder sets,

(d) L(B) ⊂ B, and L : B → B is a bounded operator,

(e) The operator L can be decomposed into eP (ϕ)P +N , where N,P are bounded operators on B with

PN = NP = 0, P 2 = P , dim(ImP ) = 1, and the spectral radius of N is less than eP (ϕ),

(f) if g is weakly θ-Hölder, then Lϕ+zg : B → B is bounded, and z 7→ Lϕ+zg is analytic on a complex

neighbourhood of 0.

Those definitions are taken from [CS], where the authors showed the following.

Theorem 2.3.2. [CS, Theorem 1.1] If ϕ is weakly θ-Hölder over a topologically mixing CMS, has finite

supremum and satisfies the SGP defined above, then P takes the form Pf = h
∫
fdν, where h ∈ B is

positive, and ν a measure that is finite and positive on all cylinders. The measure µ with dµ = hdν is in

Mσ such that

(a) if µ has finite entropy, it is the unique equilibrium state of ϕ,

(b) there is κ ∈ (0, 1) such that for all g ∈ L∞(µ) and f bounded Hölder continuous, there exists

C(f, g) > 0 such that for all n ∈ N,∣∣∣∣∫ fg ◦ σndµ−
∫
fdµ

∫
gdµ

∣∣∣∣ ≤ C(f, g)κn,

(c) the Central Limit Theorem holds (see [Sar6, Theorem 6.4]),

(d) if ϕ′ is a bounded Hölder continuous function, then t 7→ P (ϕ+ tϕ′) is real analytic on a neighbour-

hood of zero.

So in short, SGP produces a unique equilibrium state with exponentially fast mixing behaviour, and

it is not an uncommon property. For shifts with finite alphabets, it is well-known that every Hölder

potential has SGP. For CMS, the set of SGP potentials is open and dense with respect to a specific class

of topology (see [CS, Theorem 2.2]); but SGP may fail for different reasons, e.g. the potential ϕ is

transient or null recurrent. It will be useful to find a necessary and sufficient condition to guarantee

the spectral gap property. To this matter, Cyr and Sarig elegantly presented the following theorem.

Theorem 2.3.3. [CS, Theorem 2.1] Suppose Σ is a topologically mixing CMS, and ϕ : Σ → R is weakly

Hölder continuous with finite Gurevich pressure, then ϕ has the spectral gap property if and only if ϕ is

strong positive recurrent.
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Therefore, in order to answer whether a CMS admits an equilibrium probability measure with expo-

nential decay of correlations, it is often enough to check if (Σ, ϕ) is SPR, hence in the remaining part

of this chapter, we provide a characterisation of SPR via periodic points.

2.4 Boundary behaviours of countable Markov shifts
Transience is one major obstruction to the existence of equilibrium states, and in [Cyr] it is established

that transience is possible only when there are infinitely many states in A that get visited by ‘long

excursions’ from a compact part of Σ. More precisely, Σ has a transient potential if there is a state

a ∈ A with arbitrarily long paths back to itself that do not visit any b ∈ A twice. Paths of this kind

belong to what we refer to as the boundary of the CMS. We can quantify the boundary behaviours via

the following quantities.

Definition 2.4.1 (The F property). Our system Σ has the F -property if for every state a ∈ A and every

n ∈ N, the number of periodic points in [a] with period n is finite.

The F -property obviously fails for full-shifts.

The F -property holds when (Σ, σ):

• is locally compact (i.e. for every i ∈ A,
∑

j∈AMi,j <∞ where [M ]ij is the transition matrix);

• has htop < ∞. Note that If ϕ is uniformly bounded from below and P (ϕ) < ∞ then the F -

property must hold.

Definition 2.4.2 (Entropy contraction at infinity). For each n, M and q, define the set of n+1-cylinders

B(n,M, q) :=

{
[x0, . . . , xn] ∈ Cn+1 : x0, xn ≤ q, #{k ≤ n : xk ≤ q} ≤ n+ 1

M

}
,

and write zn(M, q) := #B(n,M, q). The entropy at infinity h∞ as in [ITV] is defined via

h∞(M, q) := lim sup
n→∞

1

n
log zn(M, q), h∞(q) := lim inf

M→∞
h∞(M, q),

h∞ := lim inf
q→∞

h∞(q).

In later chapters we are interested in systems with h∞ = 0. A trivial example of CMS with h∞ = 0 is

the renewal shift given in Example 2.2.1.

If the F -property fails then h∞ may not make sense: suppose there are q ∈ A and N ∈ N such that

there are infinitely many periodic orbits of length N intersecting [a] for some a ≤ q. By pigeonhole

principle some of these loops contribute, in some sense, to the boundary, but the set B(n,M, q) does

not see these paths if M > N . Another important consequence of the F -property is that M≤1(Σ), the
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space of shift-invariant sub-probability (i.e., the measure of Σ is in [0, 1]) measures, is compact [IV,

Theorem 1.2]

Remark 2.4.3. Transience arises from non-compactness of the shift space, in the sense that points often

escape to the ‘boundary’ part of the system. A CMS admits transient potentials only if its ‘boundary states’

is not finite. More precisely [Cyr, Theorem 2.1], if it does not have a finite uniform Rome (defined below).

Definition 2.4.4. Let (Σ,A) be a topologically transitive CMS. For a, b ∈ A, we say there is a path of

length ℓ between a and b if there exists w ∈ Σℓ−1 such that wj ̸= a or b for all j = 0, . . . , ℓ − 2 and

[awb] ̸= ∅. A finite uniform Rome is a finite subset A′ ⊂ A such that for some N ∈ N,

Σ ∩ (A \ A′)
N0 has no path of length ≥ N.

Existence of a finite uniform Rome defined in Definition 2.4.4 is ‘good’ for a system in the sense that

it a finite pressure potential may admit equilibrium states. It also results in unusual behaviour of

entropy at infinity, i.e., by our definition, we can show that h∞ = −∞. Suppose there exists such a

finite uniform Rome A′. Then for all M ≥ N where N is given by the definition of A′, and each q such

that A′ ⊆ [≤ q] := ∪q
a=0[a], for all n > NM , if there exists some w ∈ Σ∗ in B(n,M, q), there must be a

subword of w of length greater than N which contains no states in [≤ q]. However, such path does not

exist by definition of a finite uniform Rome, and we have a contradiction. Hence B(n,M, q) = ∅ for all

n > MN , which technically implies h∞ = −∞.

Definition 2.4.5 (Contraction at infinity). We define the following quantities:

zϕ,n(M, q) := sup

{
1

n
Snϕ(x) : x ∈ B(n,M, q)

}
,

δϕ,∞(M, q) := lim sup
n→∞

zϕ,n(M, q), δϕ,∞(q) := lim inf
M→∞

δϕ,∞(M),

δϕ,∞ := lim inf
q→∞

δϕ,∞(q).

Then the system is said to have contraction at infinity (CI), if δϕ,∞ < P (ϕ).

The name contraction can be seen as the symbolic counterpart of hyperbolicity for interval maps

T : X → X , in which case the geometric potential − log |DT | decreases. The quantity h∞ is well-

studied in [ITV, Theorem 1.1, Theorem 1.4] and other recent literature, and for CMS with finite

topological entropy, i.e., for P (0) < ∞, it coincides with the measure-theoretic entropy and Buzzi’s

graph-theoretic entropy at infinity [Buz].

Definition 2.4.6. For Σ a topologically transitive CMS and ϕ : Σ :→ R of summable variations, the

system is said to have:
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Uniform contracting structure (UCS) if

χper(ϕ) := sup

{
1

n
Snϕ(x) : σ

n(x) = x

}
< P (ϕ);

Compact returns contractions (CRC) if given q ∈ N, there exist Cq ∈ R and λq > 0 such that if x ∈ Σ

has x0, xn ≤ q then

Snϕ(y) ≤ Cq − nλq;

Contraction at infinity (CI) if δϕ,∞ < P (ϕ).

The condition (UCS) should be compared with other notions of ‘hyperbolicity’ or ‘contraction’ that

were defined in various ways for interval maps to show existence of equilibrium states and, in most

cases, with exponential decay of correlations. We provide a partial list here below, where ϕ is often

taken to be a Hölder potential.

(i) supϕ− inf ϕ < htop, see for example [HK, BT1];

(ii) supϕ < P (ϕ), see [DKU];

(iii) there exists n0 ∈ N such that supx∈X Sn0
ϕ(x)/n0 < P (ϕ), see [IR, LiRiv2] and [LSV] (the last

one involves a covering condition);

(iv) there exists λf > 1 such that for all x ∈ [0, 1] with fp(x) = x for some p ∈ N, |Dfp(x)| ≥ λpf .

Our (UCS) condition is closest to (iv) which has been proved to be equivalent to the existence of

an absolutely continuous probability measure with exponential decay of correlations for a class of

unimodal maps, see [NS].

We first show that for a system (Σ, ϕ) with some boundary conditions, (UCS) is equivalent to (CI)

meaning that in order to understand the Birkhoff averages accumulated on the paths escaping to

‘infinity’, it is enough to look at the behaviour of periodic points.

Theorem 2.4.7. Let (Σ, ϕ) be a topologically transitive CMS with the F -property, ϕ a potential with

summable variations and the pressure P (ϕ) <∞. Then (UCS) is equivalent to (CI).

The proof will be split into several lemmas. In the remaining part of this chapter, since P (ϕ) < ∞ is

always assumed, by subtracting a constant from ϕ we can without loss of generality take P (ϕ) = 0.

Also, take A = N0 so we have a natural ordering of labels.

Recall that Bϕ :=
∑

k≥2 vark(ϕ) < ∞. For any allowable k-word w = w0, . . . , wk−1 ∈ Σk such that

[wk−1, w0] ̸= ∅, let (w0, . . . , wk−1) denote the corresponding periodic point of period k.
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Given a, b ∈ N, define

ℓ(a, b) := min {k : ∃w ∈ Σk, w0 = a and wb ∈ Σk+1} .

For each pair a, b, ℓ(a, b) is finite by topological transitivity, hence ℓ(q) := supa,b≤q ℓ(a, b), is also finite.

Again by topological transitivity, for any x ∈ Σ and n ∈ N, there is ℓ = ℓ(xn, x0) ≥ 0 and we can pick a

finite word w(xn, x0) ∈ [xn] of length ℓ such that the following concatenation is allowed

w(xn, x0)x0, . . . , xn−1 ∈ Σn+ℓ, (2.4.1)

which are the first n+ ℓ symbols of a periodic point z =
(
w(xn, x0)x0, . . . , xn−1

)
.

Lemma 2.4.8. Suppose that ϕ has summable variations. If we define

Cq(ϕ) := min
a,b≤q

inf
y∈[w(a,b)b]

{
Sℓ(a,b)ϕ(y)

}
,

then we have Cq(ϕ) > −∞.

Proof. This follows since there are finitely many words w(a, b) for a, b ≤ q to consider and Sℓ(a,b)ϕ is

bounded on each [w(a, b)b] by summable variations.

Lemma 2.4.9. For a topologically transitive CMS, ϕ of summable variations, (UCS) implies (CRC).

Proof. Let q ∈ N be given and pick λq > 0 small enough such that χper(ϕ) < −2λq < 0. Suppose x ∈ Σ

has x0, xn ≤ q. Then for z =
(
w(xn, x0)x0, . . . , xn−1

)
defined as above,

Cq(ϕ) + Snϕ(x) ≤ Sn+ℓϕ(z) + 2Bϕ < 2Bϕ −
(
n+ min

a,b≤q
ℓ(a, b)

)
λq

by Definition2.4.6, where Cq(ϕ) > −∞ as in Lemma 2.4.8. Hence Snϕ(x) < Cq − nλq where Cq =

max
{
0, 2Bϕ − Cq(ϕ)

}
.

It is straightforward that (CRC) implies (CI) since for all x ∈ Σ such that x0, xn ∈ [≤ q], (CRC) does

not care whether xj ∈ [≤ q] or not, for j ∈ [1, n − 1]. To complete the proof of Theorem 2.4.7, it only

remains to show that (CI) implies (UCS) for, by the next two lemmas, non-positive potentials.

Lemma 2.4.10. There exists h : Σ → R bounded on each 1-cylinder such that for ϕ′ := ϕ+log h−log h◦σ,

we have ϕ′ ≤ 0. Moreover, ϕ′ has summable variations (or is weakly Hölder) if ϕ has summable variations

(or is weakly Hölder).

This is essentially [Sar3, Lemma 1], but we sketch parts of the proof here for completeness.
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Proof. If ϕ is recurrent, then h is the eigenfunction of the transfer operator L associated to ϕ. If ϕ

is transient, take h =
∑

n≥1 Ln1[a]. The regularity follows as in [Sar3, Lemma 1], although there

the shift is assumed to be topologically mixing, h remains finite and non-positive under topological

transitivity.

We next show that ϕ′ inherits (CI) from ϕ.

Lemma 2.4.11. If δϕ,∞ < 0, then δϕ′,∞ < 0.

Proof. By definition, there exist ε > 0 and Nε,Mε, qε such that

zϕ,n(M, qε) < −2ε (2.4.2)

for all n > Nε and M > Mε. Then for every n > Nε large enough that n+ℓ(qε)
2M < n

M , for every x ∈ B

for some B ∈ B(n, 2M, qε), as in (2.4.1), there exists an allowable word w = w(xn, x0) looping xn

back to x0, and a periodic point y of period n′ = n + |w|, such that [y0, . . . , yn+|w|−1] ∈ B(n′,M, qε),

y = (x0, . . . , xn−1w) and by summable variations,

Snϕ
′(x) ≤ Sn′ϕ′(y)− Cq(ϕ

′) +Bϕ′ = Sn′ϕ(y)− Cq(ϕ
′) +Bϕ′ ,

where Cq(ϕ
′) is defined as in Lemma 2.4.8. Then (2.4.2) implies

Snϕ
′(x) < −2n′ε− Cq(ϕ

′) +Bϕ′

and by choosing n large, this implies that for all M > Mε, zϕ′,n′(M, qε) < −ε, and consequently

δϕ′,∞(qε) < −ε. Since this inequality holds for all q > qε, we conclude that δϕ′,∞ < 0.

Note that this lemma also holds for any cohomologous ψ = ϕ + ξ − ξ ◦ σ, provided ξ has summable

variations.

In the following lemma we show that we cannot have a sequence of periodic measures supported on

a finite collection of partition sets such that their integrals of ϕ converge to zero (in non-normalised

cases the limit is P (ϕ)), and simultaneously converge to a probability measure. The proof requires

compactness results regarding the space of sub-probability measures on Σ, in particular we say a

sequence of measures (µn)n converges on cylinders to a measure µ if for any C ∈ Ck, µn(C) → µ(C) as

n→ ∞, see [IV] for more details.

Lemma 2.4.12. There is no q ∈ N and sequence (xk)k of periodic points of period pk such that 1
pk
Spk

ϕ(xk) →

0 and νk([≤ q]) → 1 as k → ∞, where νk = 1
pk

∑pk−1
i=0 δσixk .
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Proof. Assume by contradiction that the lemma is false, we will show that there is an equilibrium

state ν that has zero measure-theoretic entropy, which, by for example [Sar6, Theorem 5.6], is a

contradiction.

Let ϕ′ be as in Lemma 2.4.11, and it is easy to see Snϕ(x) = Snϕ
′(x) for all n ∈ N and all σnx = x.

Suppose there is such a q ∈ N and sequence of periodic points as in the statement of our lemma.

Note that
∫
ϕ′ dνk → 0. By [IV, Theorem 1.2], M≤1(Σ), the space of shift-invariant sub-probability

measures on Σ, is compact with respect to the convergence on cylinders topology, i.e., there is ν ∈

M≤1(Σ) such that νk → ν (up to subsequences) on cylinders. Our assumption implies that ν is a

probability measure. Hence, as (νk)k and ν are probability measures, [IV, Lemma 3.17] implies that

the convergence also holds in the weak-* topology. In particular, if we let

ϕ′L(x) :=

ϕ
′(x) if ϕ′(x) ≥ −L,

0 if ϕ′(x) < −L.

Then ϕ′L is continuous and bounded whence
∫
ϕ′L dνnk

→
∫
ϕ′L dν.

Claim. Given L > 0, for any ε > 0 there exists K ′
ε such that for all k ≥ K ′

ε,∣∣∣∣∫ ϕ′L dνnk
−
∫
ϕ′ dνnk

∣∣∣∣ < ε/4.

Proof of Claim. Since ∫
ϕ′ dνnk

=

∫
ϕ′L dνnk

+

∫
{ϕ′<−L}

ϕ′ dνnk
,

if the claim is false then there is ε > 0 such that for any N ∈ N we can find k ≥ N such that∣∣∣∣∣
∫
{ϕ′<−L}

ϕ′ dνnk

∣∣∣∣∣ ≥ ε/4.

But since ϕ′ ≤ 0, this means
∫
ϕ′ dνnk

≤ −ε/4, contradicting the fact that
∫
ϕ′ dνnk

→ 0.

Now given L > 0, take Kε ≥ K ′
ε, where K ′

ε is given by the claim, such that
∣∣∫ ϕ′ dνnk

∣∣ < ε/4, and∣∣∫ ϕ′L dν − ∫ ϕ′L dνnk

∣∣ < ε/2 for all k ≥ Kε. Then∣∣∣∣∫ ϕ′L dν

∣∣∣∣ ≤ ∣∣∣∣∫ ϕ′L dν −
∫
ϕ′L dνnk

∣∣∣∣+ ∣∣∣∣∫ ϕ′L dνnk

∣∣∣∣
<
ε

2
+

∣∣∣∣∫ ϕ′ dνnk
−
∫
ϕ′L dνnk

∣∣∣∣+ ∣∣∣∣∫ ϕ′ dνnk

∣∣∣∣
<
ε

2
+
ε

4
+
ε

4
= ε.

(2.4.3)

Now the Monotone Convergence Theorem implies −
∫
ϕ′L dν ↗ −

∫
ϕ′ dν = −

∫
ϕ dν as L → ∞.
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Moreover (2.4.3) and weak* convergence of νnk
to ν imply

∣∣∫ ϕ dν∣∣ < ε for all ε, i.e.,
∫
ϕ dν = 0, a

contradiction.

Proposition 2.4.13. Under the assumptions of Theorem 2.4.7, (CI) implies (UCS).

The idea of the proof is that (UCS) must hold for periodic orbits which ‘spend most of their time in a

compact part’ of the space. In the finite alphabet case this is trivially true, and for CMS such is assured

by Lemma 2.4.12, and then (CI) ensures that orbits which ‘spend significant time outside the compact

part’ satisfy contraction. Combining these two arguments we get (UCS).

Proof. Suppose (CI) holds for ϕ hence ϕ′ and (UCS) fails. Then by definition and non-negativity of ϕ′

there exists a sequence of periodic points x1, x2, . . . with periods p1, p2, . . . and with Birkhoff averages

sn =
1

pk
Spk

ϕ(xn) ≤ 0

for all n and limn→∞ sn = 0.

By the definition of (CI) and Lemma 2.4.11, for all ε > 0 such that δϕ′,∞ < −ε < 0, there exist

Nε, Mε, qε such that for n > Nε, M > Mε, q > qε and all x such that [x0, . . . , xn−1] ∈ B(n,M, q),

Snϕ
′(x) < −nε.

Given q,N ∈ N, let A[≤q],N be the set of words w ∈ ΣN such that w0 ≤ q and wi > q for i = 1, . . . , N−1,

and wq′ ∈ ΣN+1 for some q′ ≤ q. Let

A[≤q] := ∪N≥1A[≤q],N and for each w ∈ A[≤q], [w,≤ q] :=
⋃
q′≤q

{[wq′] : wq′ ∈ Σ|w|+1}.

Given x ∈ Σ such that x0, xn ≤ q, we can decompose x0, . . . , xn−1 = w1v1w2v2 . . . wkvk, where

wi ∈ A[≤q] and vi ∈ {∅} ∪ (∪m{1, . . . , q}m) for all 1 ≤ i ≤ k. For each x, let D(x, q) denote the set of

words wi in this decomposition.

Given q > qε, define the proportion function ζ(·)

ζ(xn) :=
1

pn

∑′

{w∈D(xn,qε)∩(
⋃

N≥Nε
A≤qε,N )}

|w|. (2.4.4)

Here
∑′ means that we count with multiplicity, i.e., if w appears k times in the decomposition of xn,

we sum its lengths k times.

Notice that since wj ≤ q if and only if j = 0 for each w ∈ A[≤q],N , so long as (N + 1)Mε ≥ 1,

SNϕ
′(x) < −Nε for x ∈ [w]. Hence, since we can assume that (Nε + 1)Mε ≥ 1, we can show that
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lim supn→∞ ζ(xn) = 0: if there exists η > 0 such that limn→∞ ζ(xn) ≥ η, by the non-positivity of ϕ′,

lim inf
n→∞

sn ≤ lim inf
n→∞

1

pn

∑′

{w∈D(xn,qε)∩(
⋃

N≥Nε
A≤qε,N )}

sup
x∈[w,≤qε]

S|w|ϕ
′(x)

≤ lim inf
n→∞

1

pn

∑′

{w∈D(xn,qε)∩(
⋃

N≥Nε
A≤qε,N )}

−|w|ε

≤ lim sup
n→∞

−ζ (xn) ε ≤ −ηε < 0,

(2.4.5)

contradicting our assumption that limn→∞ sn = 0.

By the F -property and topological transitivity, #{∪N≤Nε
A[≤q],N} < ∞, and the following quantity is

also finite:

q′(q,N) := min
{
q′ ∈ N : if w ∈ ∪N≤NεA[≤q],N then w ∈ [≤ q′]|w|

}
. (2.4.6)

Therefore, since lim supn→∞ ζ(xn) = 0,

lim
n→∞

νn ([≤ q′]) = 1 where νk =
1

pk

pk−1∑
i=j

δσixk ,

which this contradicts Lemma 2.4.12, hence (CI) implies (UCS).

2.5 A characterisation of SPR for countable Markov shifts
For countable Markov shifts, with no information about the entropy at infinity, a usually strong condi-

tion for interval dynamics like supϕ < P (ϕ) does not even guarantee existence of an equilibrium, let

alone its mixing conditions. However if we control h∞ and δ∞, it is possible to show the system is SPR.

In this case, if the potential is weakly Hölder, by Cyr and Sarig’s results, there is a unique equilibrium

state with exponentially mixing behaviours. In this section, we combine the types of ideas mentioned

in previous sections of this chapter to show a characterising condition for SPR. If the boundary beha-

viours of the CMS is ‘nice’, we need only to focus on the ergodic averages on periodic orbits reflected

by the following quantity, χper(ϕ) := sup
{

1
nSnϕ(x) : σ

n(x) = x
}

, and check if χper(ϕ) < P (ϕ). The

set of theorems we are going to prove is comparable to the list in [NS, Theorem A].

The first proof ingredient is to use entropy at infinity defined in Section 2.4 (see also an equivalent

notion in [Buz]) to control the asymptotic number of excursions from the compact part of the alphabet,

and by Theorem 2.4.7 we can look at the global behaviours of periodic points to ensure (CI). Then

together they produce some pressure gap at infinity which is similar to the idea in [RV]. The next step

to show uniform contraction implies SPR involves re-inducing arguments, and can be compared to the

proof of [DT, Lemma 2.17, Theorem 7.14], where the entropy at infinity for the symbolic version of
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the finitely branched interval maps is zero. The main theorems are presented below.

Theorem 2.5.1. Let (Σ, ϕ) be a topologically transitive CMS with the F -property (see Definition 2.4.1

above), ϕ a potential of summable variations satisfying (CI) and assume that δϕ,∞ + h∞ < 0. Then ϕ is

SPR.

Theorem 2.5.2. Let (Σ, σ, ϕ) be a topologically transitive CMS with the F -property, ϕ a potential with

summable variations such that P (ϕ) < +∞, and entropy at infinity h∞ = 0. Then (UCS) holds if and

only if (2.2.3) holds.

Remark 2.5.3. Theorem 2.5.1 implies that if h∞ < htop, which means that the measure of maximal

entropy is SPR (see [Buz, Proposition 6.1], [ITV, Proposition 2.20]), then the equilibrium state for a

potential ϕ with supϕ− inf ϕ < htop−h∞ must also be SPR, since this automatically implies δϕ,∞+h∞ <

P (ϕ). This is shown to be the case for interval maps in [BT1]. There are various cases of systems which

have a coding by a countable Markov shift and where it may, in the future, be proved that the measure

of maximal entropy is SPR the above idea would then apply. For example we might expect the surface

diffeomorphisms considered in [BCS1] to satisfy these conditions.

Remark 2.5.4. Also by [CS] for topologically mixing CMS, the set of SPR potentials is open and dense in

the set of weakly Hölder potentials (with respect to a sequentially defined topology). Then our theorem

implies that for CMS with h∞ = 0, the set of UCS is also open and dense with respect to the same topology.

It is also worth pointing out that in most literature concerning countable Markov shifts and SPR, the

default assumption on the transition matrix is topologically mixing which is slightly stronger than

topologically transitive. For our results, if the system is topologically transitive but not mixing, one

can use spectral decomposition (see the paragraph before Proposition 2.5.7) to resolve the discrepancy

between different assumptions. Let us first prove Theorem 2.5.1, for which an example with δ∞+h∞ =

P (ϕ) will be provided in Section 2.6 so our condition is sharp.

For proofs below, we again assume without loss of generality that A = N0.

Lemma 2.5.5. Suppose (Σ, σ, ϕ) is a topologically transitive mixing CMS with the F -property, ϕ has

summable variations with P (ϕ) < ∞. Then for all ε > 0, there exists q ∈ N and Kq ≥ 0 such that for all

positive n, if x0, xn ≤ q and xk > q for all 1 ≤ k ≤ n− 1, then

Snϕ(x) < Kq + n (δϕ,∞ + ε) .

Proof. Let ε > 0 be given. By definition of δ∞ there exists q such that δϕ,∞(q,M) < δϕ,∞ + ε
2 for all

M large. Then there exists Nε such that for all n > Nε if x ∈ Σ is such that x0, xn ≤ q, but xk > q for
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i = 1, . . . , n− 1, then
1

n
Snϕ(x) < δϕ,∞(q,M) +

ε

2
< δϕ,∞ + ε.

Since the F -property implies that for each n the number of words of length n which start and end at

[≤ q] are finite, also using summable variations,

Kq := max

{
max
n≤Nε

sup {Snϕ(x) : x0, xn ≤ q} , 0
}

is finite and satisfies the lemma.

Given q ∈ N as in the lemma, let Y = [≤ q] and define τY : Y → N ∪ {∞} by τY (x) := inf{n ≥ 1 :

σn(x) ∈ Y }. Then let F : Y → Y be the first return map F = στY . Let CF
p be the set of p-cylinders with

respect to (Y, F ), so that Z ∈ CF
1 implies that F (Z) = [a] for some a ≤ q. The topological transitivity

of the original system means that there is some J ∈ N such that for any Z,Z ′ ∈ CF
1 there is j ≤ J such

that Z ′ ⊂ F j(Z), which is a stronger condition than the BIP property (see [Sar5]).

Define the corresponding induced potential ϕ̂Y =
∑τY −1

i=0 ϕ ◦ σi and note that this has summable

variations (in fact var1ϕ̂Y < ∞), so Bϕ̂ < ∞. By for example [Sar3, Theorem 2], P (ϕ̂) ≤ 0, so

setting ϕ = ϕ̂ − P (ϕ̂) we have a potential of zero pressure, and there is an ϕ-conformal measure (see

Remark 2.1.3 above) mY and an equivalent invariant Gibbs measure µY , see [Sar5, Theorem 1]; also

Bϕ = Bϕ̂ <∞. Note that if ϕ is recurrent then ϕ̂ = ϕ. We also define SF
n ϕY =

∑n−1
i=0 ϕY ◦ F i.

Lemma 2.5.6. There is C1 > 0 and ε > 0 such that if Z ∈ CF
p and for some p ≥ 1,

p−1∑
i=0

τY (F
i(Z)) = n,

then

mY (Z) ≤ Cp
1 exp (n(δϕ,∞ + ε)).

Proof. Writing τY (F i(Z)) = τi, Z is an (n+ 1)-cylinder with respect to σ of the form

[z0, . . . , zτ1−1, zτ1 , . . . , zτp−1, zτp ]

where z0, zτi ≤ q for i = 1, . . . , p. By conformality and Lemma 2.5.5,

mY ([z0]) =

∫
[z0,...,zτp−1]

e−Snϕ(x)+pP (ϕ̂) dmY

≥ mY ([z0, . . . , zτp−1])e
− supx∈Z Snϕ(x)+pP (ϕ̂).
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Hence

mY ([z0, . . . , zτp−1]) ≤ exp
(
p(Kq − P (ϕ̂)) + n(δϕ,∞ + ε)

)
mY ([z0]),

so setting C1 = eKq−P (ϕ̂), we are finished.

To conclude the proof of Theorem 2.5.1, one needs to combine the Lemmas above with re-inducing

arguments.

Proof of Theorem 2.5.1. The proof is similar to that of [DT, Theorem 7.14]. As we will see, by (2.2.3)

it suffices to show the inducing scheme on some 1-cylinder [a], that is the first return map ([a], σφa) to

[a], has an exponential tail.

Pick ε > 0 such that

δϕ,∞ + h∞ < −4ε,

choose q satisfying Lemma 2.5.5 and such that for all large M ,

δϕ,∞ + h∞(M, q) < −3ε. (2.5.1)

So for (Y, F ) as above, which must also satisfy Lemma 2.5.6, by topological transitivity there exists N

such that for all Z ∈ CF
1 ,

Y ⊂
N⋃
j=1

F j(Z). (2.5.2)

Pick some 1-cylinder with respect to σ, Y0 = [a], with mY (Y0) > 0 and let mY0 be the conformal

conditional measure here.

Claim. There is some uniform constant β > 0 such that for Zn ∈ CF
n and N as in (2.5.2),

mY

(
x ∈ Zn : F j(x) /∈ Y0, j = n, . . . , n+N − 1

)
mY (Zn)

< e−β . (2.5.3)

Proof of claim. By (2.5.2), for each b ∈ A such that [b] ⊂ Y there is some cylinder (with respect to F )

A ⊂ [b] and 0 ≤ k(A) ≤ N−1 such that F k(A)(A) = [a]. Denote the (finite) collection of such cylinders

by B. In particular there is some A ∈ B such that A ⊂ Fn(Zn). Letting A′ = F−nA ∩ Zn, it suffices to

find a lower bound for mY (A′)
mY (Zn)

, independent of Zn ∈ CF
n and A ∈ B.

Then similar to the proof of Lemma 2.4.8, minA∈B infx∈A S
F
k(A) ϕY (x) is bounded from below by the

finiteness of B and summable variations .

By conformality ofmY , for anyC ⊆ Y , if Fm : C → FmC is injective,mY (F
mC) =

∫
C
exp(−SF

m ϕY )dmY ,
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hence

mY (A
′)

mY (Zn)
≥ mY (A)

mY (FnZn)
exp

(
− sup

Zn

SF
n ϕY + inf

A′
SF
n ϕY

)
≥ mY ([a])

mY (Y )
e−B(ϕY )einfx∈A SF

k(A) ϕY (x) > 0,

uniformly, as required.

Claim. For each k ≥ 1,

mY

(
x ∈ Y0 : F j(x) /∈ Y0, j = 1, . . . , kN

)
mY (Y0)

< e−kβ . (2.5.4)

Proof of Claim. This claim is proved by induction. As Y0 = [a] can be written as a union of 1-cylinders

with respect to F , (2.5.3) and the fact that for all positive numbers a, b, c, d, a+c
b+d ≤ max

{
a
b ,

c
d

}
,

together implies
mY

(
x ∈ Y0 : F j(x) /∈ Y0, j = 1, . . . , N

)
mY (Y0)

< e−β .

Assume inductively that for each i ≥ 1,

mY

(
x ∈ Y0 : F j(x) /∈ Y0, j = 1, . . . , iN

)
mY (Y0)

< e−iβ .

Defining the set

Zi :=
{
Z ∈ CF

iN+1 : Z ⊂ Y0, F
j(Z) /∈ Y0, j = 1, . . . , iN

}
,

by (2.5.3) and the inequality above:

mY

(
x ∈ Y0 : F j(x) /∈ Y0, j = 1, . . . , (i+ 1)N

)
mY (Y0)

=
1

mY (Y0)

∑
Z∈Zi

mY (Z)
mY

(
x ∈ Z : F j(x) /∈ Y0, j = iN + 1, . . . , (i+ 1)N

)
mY (Zi(N+1))

<
1

mY (Y0)

∑
Z∈Zi

mY (Z)e
−β ≤ e−βmY

(
x ∈ Y0 : F j(x) /∈ Y0, j = 1, . . . , iN

)
mY (Y0)

< e−(i+1)β .

Letting T = γn for some γ ∈ (0, 1) to be determined later, we can split the set {x ∈ Y0 : φa(x) = n}
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depending on whether x visits Y more or less than T times in its first n symbols, which can be written

mY0
({φa = n}) ≤ mY0

φa(x) = n,

T∑
j=0

τY (F
j(x)) > n




+mY0

φa(x) = n,

T∑
j=0

τY (F
j(x)) ≤ n




=: I + II.

By (2.5.4), I ≤
∑n

p=T exp
(
− p

N β
)
≤ C2 exp

(
− T

N β
)
, for some C2 ∈ R. The number of n-cylinders

with respect to σ which spend a proportion γ ≤ 1/M of their σ-iterates up to n in Y is no more than

#B(n,M, q). Moreover, for all large n, #B(n,M, q) ≤ C3e
n(h∞(M,q)+ε) for some C3 > 0, so combining

this with Lemma 2.5.6 and (2.5.1) we get

II ≤ CT
1 exp (n(δϕ,∞ + ε))#B(n,M, q)

≤ CT
1 C3 exp (n(δϕ,∞ + h∞(M, q) + 2ε)) ≤ CT

1 C3 exp (−nε).

Then choosing γ = min
{

1
M , ε

2 logC1

}
, both I and II are exponentially small so that

lim sup
n→∞

1

n
logmY0

({φa = n}) < 0.

As mY0 is conformal,

mY0
({φa = n}) ≍

∑
σnx=x,φa(x)=n

eSnϕ(x)−i(x)P (ϕ̂) ≥ Z∗
n(ϕ, a),

where i(x) corresponds to the number of hits to Y before Y0. Hence (2.2.3) holds and the system is

strong positive recurrent.

Theorem 2.5.1 means that (UCS) implies SPR. For the other direction of Theorem 2.5.2, it suffices to

prove the statement under topological mixing since we can use spectral decomposition, a tool to reduce

arguments on topologically transitive to topologically mixing.

Briefly speaking, if (Σ, σ) is a topologically transitive CMS but not topologically mixing, by Proposi-

tion 1.1.4 there exists

p := gcd {n : ∃a ∈ A, x ∈ [a] s.t. φa(x) = n} > 1,

called the period of Σ. The alphabet is divided into p equivalence classes {A1 . . . ,Ap−1} and Σ =⊎p−1
i=0 Σi, Σi = {x ∈ Σ : x0 ∈ Ai} . Then (Σi, ϕp, σ

p) is conjugate to a topological mixing CMS whose

alphabet is given by the first return words for a ∈ Ai, and most statements (especially those in this

chapter) proved for (Σi, ϕp, σ
p) remain valid for the original CMS. For more detailed discussion, see
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for example [RS, §2.2,§6].

Proposition 2.5.7. Under the assumptions of Theorem 2.5.2 i.e., topologically transitive, F property

holds and h∞ = 0, SPR implies (UCS).

Proof. By SPR there is a ∈ A such that ∆a[ϕ] > 0. First by [Sar3, Lemma 3], P (ϕ) = 0 implies the

induced pressure on [a], P (ϕ), is zero, and SPR implies that there exists εa > 0 such that

P (ϕ+ 2εa) <∞. (2.5.5)

Moreover, as in (2.2.3), there exists Na ∈ N such that for all n > Na, all x such that φa(x) = n,

1

n
Snϕ(x) < −εa. (2.5.6)

Suppose by contradiction that χper(ϕ) = supn≥1 sup {Snϕ(x) : σ
nx = x} = 0; take ϕ′ as in Lemma 2.4.11

and χper(ϕ
′) = χper(ϕ). Then similar to the proof of Lemma 2.4.12 there exists a sequence of periodic

points x1, x2, . . . , with periods p1, p2, . . . and Birkhoff averages

sn =
1

pn
Spn

ϕ(xn) =
1

pn
Spn

ϕ′(xn) > −εa and lim
n→∞

sn = 0. (2.5.7)

Case 1. Suppose there exists x ∈
{
x1, x2 . . .

}
such that ∀k ≥ 0, xk ̸= a. Then as in (2.4.1), by

topological transitivity, there are words v, w of length ℓ1 = ℓ(a, x0) and ℓ2 = ℓ(xn−1, a) respectively

such that v0 = a, vx0 ∈ Σ|v|+1, xn−1w ∈ Σ|w|+1, wa ∈ Σ|w|+1, hence

vx0, . . . , xn−1w ∈ Σℓ1+n+ℓ2 .

Moreover, for each k ∈ N and nk = kn+ ℓ1 + ℓ2 there is a periodic point y(k) ∈ [a] with φa(y(k)) = nk

of the form:

y(k) =
(
v (x0, . . . , xn−1)

k
w
)

where (x0, . . . , xn−1)
k means the string is repeated k times. By summable variations, there exists a

constant C > 0 such that for all k,

Z∗
nk
(ϕ, a) ≥ exp (Snk

ϕ(y(k))) ≥ exp (C − knεa).

Then as in [Sar3, (5)],
∣∣∣P (ϕ+ p)− log

∑
k≥1 e

kpZ∗
k(ϕ, a)

∣∣∣ ≤ Bϕ, therefore,

∞ = log
∞∑
k=1

enkεa+CeSnk
ϕ(y(k)) ≤ C + log

∞∑
n=1

enεaZ∗
n(ϕ, a) ≤ P (ϕ+ εa) +Bϕ + C,

which is a contradiction to (2.5.5) since Bϕ <∞.
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Case 2. Now suppose all x ∈ {x1, x2, . . . } contain state a. Without loss of generality one can suppose

xi0 = a for all i by periodicity. Recall from (2.2.1) that the induced alphabet Aa ⊂ Σ∗ consists of

cylinders of the form [w] where wi = a if and only if i = 0, and moreover wa ∈ Σ|w|+1, i.e., each w is a

first return word to a.

For all n,

xn =
(
w0 . . . wkn−1

)
for some kn ≥ 1, wi ∈ Aa and

kn−1∑
j=0

|wj | = pn;

that is, each xn can be decomposed into several first return words.

As Smϕ(x) = Smϕ
′(x) for any periodic point with period m, non-positivity of ϕ′ and (2.5.6) imply that

for all first return words w with length longer than Na,

sup
x∈[w]

S|w|ϕ
′(x) < −|w|εa.

Letting Aa,>k := {w ∈ Aa : |w| > k}, re-define the proportion function similarly to (2.4.4),

ζ :
{
x1, . . .

}
→ [0, 1], ζ(xn) =

1

pn

∑′

w∈{xn
0 ...x

n
pn−1∩Aa,>Na}

|w|,

where Σ′ again means that we count with multiplicity. Then repeating (2.4.5) with ε = εa this defin-

ition ensures limn→∞ ζ(xn) = 0 since otherwise we contradict the property (2.5.7) of our periodic

points. By the F -property, we can define the function qa by

qa(N) := min {q ∈ N : if w ∈ Aa,≤N , then wi ≤ q for i = 0, . . . , |w| − 1} .

The sequence of probability measures

νn =
1

pk

pn−1∑
j=0

δσjxn

satisfies limn νn([≤ qa(Na)]) = 1. But since limk→∞ snk
= 0, we have a contradiction to Lemma 2.4.12,

hence such sequence of periodic points does not exist.

This concludes the proof of Theorem 2.5.2.

2.6 Bouquet examples
The conditions for Theorem 2.5.1,2.5.2 are weak, and so our results are applicable to a wide range

of CMS. In this section, a special type of CMS is constructed for which our theory applies as well as

exhibiting edge cases to demonstrate the sharpness of our results.
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Our examples take the form of ‘bouquet’ Markov graphs, see [Ru1, Example 2.9][Ru2], some of them

which inspired this section come from codings for dynamical systems, particularly in the case of interval

maps f : [0, 1] → [0, 1]. For some subset Y ⊂ [0, 1] with return time function φ = φY : Y → N ∪ {∞},

the inducing scheme F = fφ defines a Markov map on Y , i.e., there is a partition {Yi}i such that φ|Yi

is some constant φi and F (Yi) is a collection of elements of this partition. We can associate bouquet

Markov graphs with shift dynamics, a potential ϕ : I → [−∞,∞] is then lifted to the symbolic model.

For example, such a coding can be done for general multimodal maps of the interval, as shown in, for

example, [BT2, Theorem 3], or more classical and specific inducing schemes like those given in [BLS]

(which include Collet-Eckmann maps).

Bouquet setup

Following [Ru1, Ru2], let a : N → N0 with a(1) = 1. We define our set of vertices as

V := {r} ∪
∞⋃

n=1

{
vn,ik : 1 ≤ i ≤ a(n), 1 ≤ k ≤ n− 1

}
,

where all vertices with distinct labels above are distinct vertices. We call r the root. For notational

convenience write vn,i0 = vn,in = r. Then the only allowed transitions in our Markov graph are vn,ik 7→

vn,ik+1 for 0 ≤ k ≤ n − 1. This defines a bouquet of loops: with a(n) disjoint simple loops (from r back

to r) of length n. The resulting shift space which we refer to as a bouquet shift is Σ = ΣV : it has a(n)

periodic cycles of period n. The topological entropy of ΣV is given by the formula

htop = lim sup
n→∞

1

n
log p(n),

where p(n) is the number of length n loops starting and ending at the root, and lim sup can be replaced

with lim since the shift is mixing.

r

v2,11

v3,22 v3,21

v5,11

v5,12v5,13

v5,14

Figure 2.2: Case a(n) = 1 for each prime number n, and 0 otherwise. Picture credit to M. Todd.

Below we will make various choices of (a(n))n and potentials ϕ : ΣV → R. Our analysis will be via

first returns to [r]. Note that [Ru1, Ru2] were concerned with measures of maximal entropy (in which
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case we set ϕ ≡ −htop(σ) so that P (ϕ) = 0), rather than the more general setting of equilibrium states

that we are interested in here.

Lemma 2.6.1. h∞ = lim supn→∞
1
n log a(n).

Proof. Suppose that lim supn→∞
1
n log a(n) = log λ, which we may assume is finite, as otherwise the

conclusion is immediate since we can prove (in the next paragraph) h∞ ≥ log λ. Then for ε > 0 there

is C > 0 such that for an infinite sequence of nk ∈ N,

1

C
λnk(1−ε) ≤ a(nk) ≤ Cλnk(1+ε),

and indeed the upper bound holds for all nk ∈ N.

We first show that h∞ ≥ lim supn→∞
1
n log a(n). Fix M, q ∈ N. If n is large enough so that (n+1)/M ≥

1, then any of the simple loops of length n that only intersects [≤ q] at the root r is in B(n,M, q). In

other words, zn(M, q) ≥ a(n) ≥ 1
Cλ

n(1−ε). Taking logs then divide by n we find that h(M, q) ≥ log λ,

hence the claimed lower bound holds.

For the upper bound, fix M, q and notice that for each n, if [x0, . . . , xn−1] ∈ B(n,M, q) then it contains

no more than n/M disjoint simple loops. In other words, it visits the root r at most n/M times. Then,

as for all M > 2 there is
(
n
k

)
≤
(

n
n/M

)
for all k ≤ n/M ,

#B(n,M, q) ≤
∑

i1+···+ik=n
k≤n/M

a(i1) . . . a(ik) ≤
n/M∑
k=1

(
n

k

)
Ckλn(1+ε)

≤ Cn/M n

M
λn(1+ε)

(
n

n/M

)
≤ Cn/M n

M
λn(1+ε)

(
n · e
n/M

)n/M

.

Therefore, h∞(M, q) ≤ 1
M (logC + logM + 1) + (1 + ε) log λ. This upper bound is independent of q,

hence h∞ = limM→∞ h∞(M, q) ≤ (1 + ε) log λ. As ε > 0 was arbitrary, h∞ ≤ log λ as claimed.

2.6.1 UCS is a weak condition

Here we will use a simple set of examples to compare (UCS) with other conditions of this type.

Set a(n) = 1 for all n; notice that since the number of compositions for each number n ∈ N is 2n−1, the

topological entropy of this bouquet system is log 2 and by [BBG, Theorem 6.4] ΣV is almost isomorphic

to the renewal shift defined in Example 2.2.1. Set ϕ|[rvn,1
1 ] = −n log 2 and ϕ = 0 otherwise. Note that

this potential is Markov, in the sense that for all x, ϕ(x) = ϕ(x0, x1) so the induced potential (with
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respect to [r]) ϕ : [r] → R is Bernoulli i.e., ϕ(x) = ϕ([x0]), and takes the value −n log 2 on the vertex

corresponding to the loop of length n. Then

P (ϕ) = log

∑
n≥1

1

2n

 = 0.

Since, moreover,
∑

n≥1
n
2n <∞, ϕ is positive recurrent and has P (ϕ) = 0.

This system (ΣV , σ, ϕ) clearly satisfies (UCS) since for the periodic point xn of period n, 1
nSnϕ(xn) =

− log 2. On the other hand, the hyperbolicity condition as in [IR, LiRiv1] fails since for any n, there

is a point yn ∈ [vn,11 vn,12 · · · vn,1n−1] such that Snϕ(yn) = 0. Finally, regarding the conditions of [LSV],

this would require
∑

C∈C1
supx∈C e

ϕ(x) < ∞ as well as a condition like hyperbolicity to hold, both of

which fail here.

Remark 2.6.2. One can modify ϕ to be uniformly bounded, e.g. putting weight −2 log 2 on n/2 of the

vertices in the loop of length n (suitably adjusting for when n is odd).

2.6.2 An example showing the sharpness of Theorem 2.5.1

Here we give a class of examples where (UCS) holds, but δϕ,∞ + h∞ = 0 and (2.2.3) fails, so that the

condition δϕ,∞ + h∞ < 0 in Theorem 2.5.1 is necessary.

Let a(n) = 2n and C, β > 0 to be chosen later. Now define ϕ|[rr] = logC, ϕ|[rvn,i
1 ] = logC − n log 2 −

β log n and ϕ = 0 otherwise (as in Remark 2.6.2 we could also spread this potential out if desired).

First observe that Zn(ϕ, [r]) ≥ C2n2−nn−β , so P (ϕ) ≥ 0.

Taking the first return map to [r] the induced potential ϕ corresponding to loops of length n takes the

value logC − n log 2− β log n. Then

P (ϕ) = log

(
C
∑
n

a(n)e−n log 2−β logn

)
= log (Cζ(β))

where ζ denotes the Riemann zeta function ζ(s) =
∑

n≥1 n
−s. We use the ideas of Hofbauer and Keller

presented in [IT, Section 4.1], generalised to this setting (see also the ideas of [Ru1, Table 1]).

(a) If β > 1 and we choose C = 1/ζ(β) then the pressure of the induced system is zero, ϕ is recurrent

and P (ϕ) = 0.

(b) If β > 1 and C > 1/ζ(β), or β ∈ (0, 1), then the pressure of the induced system is positive and

this is not interesting for our purposes (note this would imply P (ϕ) > 0).

(c) If β > 1 and C < 1/ζ(β) then ϕ is transient and P (ϕ) = 0.
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We will now assume that we are in case (a).

Since

C
∑
n

na(n)e−n log 2−β logn = C
∑
n

n1−β ,

the system is positive recurrent, and we have an equilibrium state µϕ here, if β > 2 (if β ∈ (1, 2] then

ϕ is null recurrent); moreover there is a conformal measure mϕ. Since htop(σ) must satisfy

1 =
∑
n

a(n)e−nhtop(σ) =
∑
n

2ne−nhtop(σ),

we see that htop(σ) = log 4.

The fact that h∞ = log 2 follows from Lemma 2.6.1. We next show that δϕ,∞ = − log 2. That

zn,ϕ(M, q) ≥ − log 2 + 1
n (logC + β log n) for n + 1 > M and n > nq is immediate from the defini-

tion, so zn,ϕ(M, q) ≥ − log 2. For the upper bound, the proof is similar to, though simpler than, that of

Lemma 2.6.1: if we consider v ∈ G(q) as defined there, then for x ∈ [v], 1
|v|S|v|ϕ(x) ≤ − log 2 and since

the finite behaviour contributed by any prefixes and suffixes disappears in the limit, δϕ,∞ = − log 2

and so δϕ,∞ + h∞ = 0.

We see here that Z∗
n(ϕ, r) = C/nβ so SPR fails. Hence Theorem 2.5.1 is sharp in the sense that we can

satisfy (2.2.3), but if δϕ,∞ + h∞ < 0 does not hold then (2.2.3) may fail. Note also that if ϕ was null

recurrent or, as in case (c) above, transient, we would also fail these conditions in a more dramatic

way.

2.6.3 Relation of bouquets to inducing schemes and general shifts

At the beginning of this section we described interval maps (I, f) with an inducing scheme (Y, τ, F =

fτ ) such that Y is a countably infinite union of disjoint subsets
⋃

i Yi and τ |Yi
is constant. If we have

F (Yi) = Y for all i, which is the case for the examples mentioned above, then we identify Y with the

root r. Suppose a(n) = # {Yi ⊂ Y : τ |Yi = n}, then for each such Yi in the set we associate a loop

r 7→ v
n,ij
1 7→ v

n,ij
2 7→ · · · 7→ v

n,ij
n−1 7→ r, for ij = 1, . . . , a(n).

We can project a sequence (x0, x1, . . .) ∈ Σ to x ∈ I by a projection π as follows. Suppose that

x ∈ Y has F ℓ(x) ∈ [rvnℓ,iℓ
1 ] for all ℓ ≥ 0 for some nℓ, iℓ. Then there will be a corresponding sequence

(x0, x1, . . .) ∈ Σ given by (r, vn0,i0
1 , vn0,i0

2 , . . . , vn0,i0
n0−1, r, v

n1,i1
1 , . . .). So let π(x0, x1, . . .) = x here, if

x0 = v
n,ij
k for k > 1 then consider y ∈ Y the projection of the sequence (r, v

n,ij
1 , . . . , v

n,ij
k−1, x0, x1, . . .)

and let π(x0, x1, . . .) = fk(y).

If ϕ : I → [−∞,∞] is a potential, then this lifts to a potential on the bouquet shift ϕ ◦π. The regularity
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of the lifted potential depends on the regularity of the original one and the choice of inducing scheme.

For some specific cases of multimodal maps where ϕ = − log |Df | and there is an inducing scheme

so that ϕ lifts to a potential of summable variation, see for example [BLS, Proposition 4.1] which

considers multimodal maps with different rates of growth of derivative along critical orbits. In this

case Collet-Eckmann maps yield symbolic models satisfying (UCS) along with our other equivalent

properties, while non-Collet-Eckmann maps fail all of these.

We can extend a version of the coding used above to any topologically transitive CMS (Σ, σ): we can

pick a 1-cylinder and take first returns to it and then use the induced system to recode the system via a

bouquet with the root being the 1-cylinder selected. Hence the bouquet setup captures the behaviour

of any topologically transitive CMS.



Chapter 3

Almost sure limit theorems for cover

times

In this section we put the thermodynamics of CMS aside and focus on an almost sure convergence

problem for interval maps. Let X be a compact interval and for some closed subset Λ ⊆ X, suppose

f : Λ → Λ is topologically transitive. By transitivity, for every point x in the repeller (see (3.2.1) for

definition) that is not a preimage of some periodic point, its orbit in the long-term will saturate the

repeller. It is then sensible to ask the following question: given r > 0 small, what is the time/number

of iterates needed for the orbit of x under f reaching a resolution of r? In other words, we care about

the following quantity, to which we refer to as the r-cover time of x:

τr(x) = τ(x) := inf
{
k ≥ 0 : for all y ∈ Λ, there exists j ≤ k s.t. d

(
f j(x), y

)
< r
}
.

The name cover comes from the trivial observation that
{
B
(
f j(x), r

)}τr(x)
j=0

forms an r-cover of Λ.

Cover times were also studied for strong Markov processes, in such context they are interpreted as the

minimum time for a process {Xn}n to have visited all of a finite subset in the state space. We start our

discussion with a quick review on results for expected cover times for Brownian motions and interval

maps, then move on to the almost sure convergence rate of asymptotic cover times.

3.1 Expected cover times
An important quantitative result for cover times in stochastic process context was obtained by Mat-

thews [Mat] for Brownian motion on Σd :=
{

surface of the unit sphere Sd ⊂ Rd
}

. In particular, the

51
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author considered two separable quantities: C1(r, d) the time taken for the geodesic balls of radius

r, which the author referred to as ‘caps’, around the points of the Brownian motion to cover Sd, and

C2(r, d) similarly defined but considering also the reflection of the points about the origin, hence there

is E[C1(r, d)] = 2E[C2(r, d)]. For p the scale parameter of Brownian motion, and all d ≥ 4, the expect-

ations of C1(r, d) and C2(r, d) are sharp estimates were given, for the special case d = 3,

4

p
≤ lim inf

r→0

E[C1(r, d)]

log log(r−1)
≤ lim sup

r→0

E[C1(r, d)]

log log(r−1)
≤ 16

p
,

and the upper and lower bounds are halved for E[C2(r, d)].

The proof consists of two steps: (1) calculating the expected time E[τCd ] for a strongly Markov process

to visit all components in a finite collection C of subsets in the state space, (2) and approximate the

number of balls of diameter r needed to cover Σd. In particular, the first part involves what the author

refers to as an ‘auxiliary randomisation’, which assigns a product measure that returns the probability

of ‘first hitting’ each set in such a collection C in a particular order, and using conditional expectation

to calculate E[τC ]. The expected cover time for Cd turns out only to depend on the logarithmic order

of #Cd, hence the approximation in step (2) need not to be too accurate.

Such a method is transferable to the cover time problem for interval maps on their repellers, and

chaos games on the attractors of iterated function systems (IFS). An iterated function system is a

collection F = {fi}i∈Iof contraction maps on a subset of R , and it is known that there always exists

a unique non-empty compact set K such that K =
⋃

i∈I fi(K). Then the chaos game, a process first

described by [Bar], refers to applying maps from {fi}i∈I to an x ∈ K repeatedly on the left: let

ω = (i0, i1, . . . ) ∈ IN0 , the orbit of x is defined by O(x) =
{
fin−1

◦ · · · ◦ fi0(x)
}
n∈N, this allows us to

talk about cover times.

In these settings, although the process is no longer a Brownian motion hence not necessarily inde-

pendent at each iteration, the lack of independence can be resolved by fast mixing properties. For

cover times in chaos games that has the ψ-mixing property, the upper and lower bounds were given for

expected cover times in [BJK, Theorem 2.2]. For interval dynamics, [JT] considered cover times for

the same class of maps as in [BDT] whose transfer operators have nice properties. Their main results

showed that there exists ε > 0 such that for all r small,

1

Mµ(r/ε)
⪯ Eµ[τr] ⪯

− log r

Mµ(εr)
, (3.1.1)

where µ is an f -invariant measure and Mµ(r) = minx∈supp(µ) µ (B(x, r)). Mµ(r) is also used to define

the following quantities.
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Definition 3.1.1. The upper and lower Minkowski dimensions of µ are defined respectively by

dimM (µ) := lim sup
r→0

logMµ(r)

log r
, dimM (µ) := lim inf

r→0

logMµ(r)

log r
, (3.1.2)

and write dimM (µ) when they coincide.

These dimension-like quantities reflect the decay rate of the minimal µ-measure ball at scale r, and they

are closely related to the box-counting dimension of the ambient space (see [FFK] for more details).

Alternatively, in the language of Lq dimensions for measures, Minkowski dimensions are the L−∞

dimensions. We are interested in the Minkowski dimensions of µ because they govern the asymptotic

behaviour of hitting times associated to the balls which are most ‘unlikely’ to be visited at small scales.

If dimM (µ) <∞, then (3.1.1) can be re-written in terms of dimM (µ); if µ is Ahlfors regular, i.e., there

exists sf > 0 such that for all r > 0 and x ∈ supp(µ), µ(B(x, r)) is comparable to rsf , so (3.1.1) can

be rewritten in terms of sf .

3.2 Results on almost sure cover times
In addition to expectational results on τr, an almost sure asymptotic limit law was proved in [BJK],

which established a connection between τr and dimM (µ). Similar statements can be obtained as well

for piecewise expanding Markov maps described below.

Let A be a finite or countable index set, and P = {Pa}a∈A a collection of subintervals in [0, 1] with

disjoint interiors in [0, 1]. We say f : ∪a∈APa → [0, 1] is a Markov map if for any a ∈ A, f([a]) is a

union of elements in P = {Pa}a∈A and fa := f |Pa
is injective, continuous and monotone. The map f

is further said to be piecewise expanding if there is a uniform constant γ > 1 such that for all a ∈ A,

|Dfa| ≥ γ.

The repeller of f , denoted by Λ, is the collection of points with all their forward iterates contained in

P, namely

Λ :=

{
x ∈ X : fk(x) ∈

⋃
a∈A

Pa for all k ≥ 0

}
. (3.2.1)

We study the dynamics of f : Λ → Λ, together with an ergodic invariant measure µ supported on Λ.

There is a shift system associated to f : let M be an A × A matrix such that Mab = 1 if and only if

f(Pa) ∩ Pb ̸= ∅, and 0 otherwise. The map f is topologically transitive if for all a, b ∈ A, there exists k

such that Mk
ab > 0. Let Σ denote the space of all infinite allowable words, i.e.,

Σ :=
{
x = (x0, x1, . . . ) ∈ AN0 :Mxk,xk+1

= 1, ∀ k ≥ 0
}
.
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Define the projection map π : Σ → Λ by

x = π (x0, x1, . . . ) if and only if x ∈
∞⋂
i=0

f−iPxi
.

The dynamics on Σ is the left shift σ : Σ → Σ given by σ(x0, x1, . . . , ) = (x1, x2, . . . ), and π defines a

semi-conjugacy f ◦ π = π ◦ σ. The corresponding symbolic measure µ̃ of µ exists due to the Markov

structure of f and is given by µ = π∗µ̃, i.e., for all Borel-measurable sets B ∈ B([0, 1]), µ(B) =

µ̃
(
π−1B

)
.

For two partitions P and Q, we define P ∨ Q := {P ∩Q : P ∈ P and Q ∈ Q}. Set Pn :=
∨n−1

j=0 f
−jP,

then each P ∈ Pn corresponds to an n-cylinder in Σ: for any w ∈ Σ∗ of length n,

π[w0, w1, . . . , wn−1] =
n−1⋂
j=0

f−jPwj
=: Pw.

We say the measure µ is exponentially ψ-mixing if µ̃ is ψ-mixing (see Definition 1.1.5) with

ψ(n) ≤ C1e
−ρn (3.2.2)

for some C1, ρ > 0.

Given the setting above, the first theorem is presented below, similar to [BJK].

Theorem 3.2.1. Let (f, µ) be a finite measure preserving system on a compact interval in R. Assume that

f is topologically transitive, Markov and piecewise expanding. If dimM (µ) < ∞, then for µ-a.e. x in the

repeller,

lim sup
r→0

log τr(x)

− log r
≥ dimM (µ), lim inf

r→0

log τr(x)

− log r
≥ dimM (µ).

If µ is exponentially ψ-mixing , then for µ-almost every x ∈ Λ, the inequalities above are improved to

lim sup
r→0

log τr(x)

− log r
= dimM (µ), lim inf

r→0

log τr(x)

− log r
= dimM (µ).

As in [BJK, Theorem 1.1] and [JT, Theorem 2.2], this theorem is particularly useful when dimM (µ)

and dimM (µ) are finite (and preferably non-zero), which is true more often than not for finite IFS and

finitely branched interval maps.

Remark 3.2.2. Systems with dimM (µ), or at least dimM (µ) < ∞, are fairly common. For example, if

µ is doubling, i.e., there exists constant D > 0 such that for all x ∈ supp(µ) and r > 0, Dµ(B(x, r)) ≥

µ(B(x, 2r)) > 0, then dimM (µ) <∞.

Proof. For each n ∈ N let xn ∈ supp(µ) be such that µ(B(xn, 2
−n)) = Mµ(2

−n), then by the doubling
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property,

Mµ

(
2−n

)
= µ

(
B
(
xn, 2

−n
))

≥ D−1µ
(
B
(
xn, 2

−n+1
))

≥ D−1Mµ

(
2−n+1

)
= D−1µ

(
B(xn−12

−n+1
)
),

and iterating this one gets Mµ(2
−n) ≥ D−n+1Mµ(1/2), in other words

logMµ(2
−n)

−n log 2
≤ −(n− 1) logD + logMµ(1/2)

−n log 2
.

As for all r > 0, there is unique n ∈ N such that 2−n < r ≤ 2−n+1, and log 2−n

log 2−n+1 = 1,

lim sup
r→0

logMµ(r)

log r
= lim sup

n→∞

logMµ (2
−n)

−n log 2
≤ logD

log 2
<∞.

However, Minkowski dimensions are not always finite due to non-doubling behaviours, or generally

more extreme decay of Mµ(r), especially when the associated symbolic shift is a countable Markov

shift as discussed in Chapter 2. In this case the natural choice of the exponentially mixing measure

is either not doubling or the ball of minimum measure decays stretched-exponentially as r → 0 (see

Example 3.3.2 below). Therefore a new notion of Minkowski dimension needs to be introduced.

Definition 3.2.3. Define the upper and lower stretched Minkowski dimensions by

dim
s

M (µ) := lim sup
r→0

log | logMµ(r)|
− log r

, dims
M (µ) := lim inf

r→0

log | logMµ(r)|
− log r

.

Those quantities should be of independent interest. Our second theorem below deals with almost sure

cover times for systems in which Mµ(r) decays at stretched-exponential rates.

Theorem 3.2.4. Let (f, µ) be a measure preserving system on [0, 1]. Suppose f is topologically transitive,

Markov and piecewise expanding. If dimM (µ) = ∞, but 0 < dims
M (µ),dim

s

M (µ) <∞, then for µ-almost

every x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
≥ dims

M (µ), lim sup
r→0

log log τr(x)

− log r
≥ dim

s

M (µ) (3.2.3)

If (f, µ) is exponentially ψ-mixing, then for µ-almost every x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
= dims

M (µ), lim sup
r→0

log log τr(x)

− log r
= dim

s

M (µ). (3.2.4)

We first discuss some applications of our main theorem.

3.3 Examples
Theorem 3.2.1 and Theorem 3.2.4 are applicable to the following systems.

Example 3.3.1. Finitely branched Gibbs-Markov maps: let f be a topologically transitive piecewise
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expanding Markov map with A finite. Let h := dLeb
dLeb◦f , then f is a Gibbs-Markov map if

• (Distortion) log h ◦ π|a is Lipschitz with respect to the symbolic metric ds for all a ∈ A.

• (Big image property) There exists Bf > such that Leb (f(π[a])) > Bf for all a ∈ A.

The corresponding symbolic measure µ̃ is a Gibbs measure as in Definition 1.2.6. For maps of this

kind, the Gibbs measure µ (which is also the unique equilibrium measure for the potential − log |Df |)

is doubling (cf [Dol, Appendix 3]) so by Remark 3.2.2 dimM (µ) exists and is finite, then by The-

orem 3.2.1,

lim
r→0

log τr(x)

− log r
= dimM (µ)

for µ-a.e. x in the repeller of f .

In the next example, when r → 0 at polynomial rate, Mµ(r) decays exponentially, hence dimM (µ) is

infinite so the stretched Minkowski dimensions are needed for computing a finite limit.

Example 3.3.2. Similar to [JT, Example 7.4], consider the following class of infinitely full-branched

maps: pick κ > 1 and set c = ζ(κ) =
∑

n∈N
1
nκ . Let a0 = 0, aj =

∑n
j=1

1
cjκ and define f by

∀n ∈ N, f(x) = cnκ(x− an−1) for x ∈ [an−1, an) =: Pn.

Then f is an infinitely full-branched affine map, and we can associate this map with a full-shift system

on N: x = π(i0, i1, . . . ) if for all j ≥ 1, f j(x) ∈ Pij .

Let ω > 1 and construct µ̃ the finite Bernoulli measure by

µ̃([i0, . . . , in−1]) =

n−1∏
j=0

ω−ij ,

so the push-forward measure µ = π∗µ̃ has µ(Pn) = ω−n.

Proposition 3.3.1. For (f, µ) defined in Example 3.3.2, dimM (µ) = ∞, but dims
M (µ) = 1

κ−1 .

Proof. For each r > 0, as the measure of Pj decays exponentially while their diameter only decays

polynomially, the r-ball of minimum measure is found near 1. In particular, along the sequence rn =

1
2c

∑
j≥n j

−κ ≈ 1
2c(κ−1)nκ−1 , the ball that realises Mµ(rn) is contained in

⋃∞
j=n Pj , hence

ω−n ≤Mµ(rn) ≤
ω−n

1− ω−1
.

Therefore

dimM (µ) ≥ lim sup
n→∞

n logω

(κ− 1) log n
= ∞,
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whereas for all n,

log n+ log
(
logω + log(1−1/ω)

n

)
(κ− 1) log n+ log(2c(κ− 1))

≤ log | logMµ(rn)|
− log rn

≤ log n+ log logω

(κ− 1) log n+ log(2c(κ− 1))
.

As for all r > 0, there is unique n ∈ N such that rn+1 ≤ r < rn while limn→∞
log rn+1

log rn
= 1, we can

conclude with dims
M (µ) = 1

κ−1 .

As in [JT, Example 7.4] it is very difficult for the system to cover small neighbourhoods of 1 so The-

orem 3.2.1 says lim supr→0
log τr(x)
− log r ≥ dimM (µ) = ∞, but since µ̃ is Bernoulli hence ψ-mixing, The-

orem 3.2.4 implies

lim
r→0

log log τr(x)

− log r
=

1

κ− 1
for µ-a.e. x.

3.4 Proof of Theorem 3.2.4
The proofs in this section are adapted from those of [BJK, Proposition 3.1, 3.2]. We will only demon-

strate the proofs for Theorem 3.2.4, i.e., the asymptotics are determined by stretched Minkowski di-

mensions; the proofs for Theorem 3.2.1 are obtained verbatim by replacing all stretched exponential

sequences in the proofs below by some exponential sequence, e.g. for a given constant s ∈ R, e±ns

will

be replaced by 2±ns.

Remark 3.4.1. Assuming the conditions of Theorem 3.2.4, we will prove that the statements hold along

a subsequence rn = n−1 that has: for each r > 0 there is a unique n ∈ N with rn+1 < r ≤ rn while

limn→∞
log rn+1

log rn
= 1 (if dimM (µ) or dimM (µ) are finite we simply choose rn = 2−n instead). Since

log τr(x) is increasing as r → 0,

lim sup
n→∞

log log τrn(x)

− log rn
= lim sup

r→0

log log τr(x)

− log r
.

The same argument applies similarly to the lim inf ’s.

Proof of the inequalities (3.2.4)

Assuming the inequalities in (3.2.3), we first prove the set of inequalities (3.2.4) which requires the

exponentially ψ-mixing condition.

Proposition 3.4.2. Assume that (f, µ) is exponentially ψ-mixing, and the upper stretched Minkowski

dimension of µ, dim
s

M (µ), is finite. Then for µ-almost every x ∈ Λ,

lim sup
n→∞

log log τr(x)

− log r
≤ dim

s

M (µ).
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Proof. Let ε > 0, and for simplicity denote α := dim
s

M (µ).

For any finite k-word i = x0, . . . , xk−1 ∈ Σk, let i− = x0, . . . , xk−2, i.e., i dropping the last letter. Recall

that for each i ∈ Σ∗, Pi = π[i], and we define

Wr := {i ∈ Σ∗ : diam(Pi) ≤ r < diam(Pi−)}.

By expansion, for each n ∈ N, the lengths of the words in Wn−1 are bounded from above, hence we

can define

L(n) :=
log n

log γ
+ 1 ≥ max{|i| : i ∈ Wn−1}.

Given y ∈ [0, 1] and r > 0 such that B(y, r) ⊂ supp(µ), define the corresponding symbolic balls by

B̃(y, r) := {[i] : i ∈ Wr, Pi ∩B(y, r) ̸= ∅} .

If for some x ∈ Pi, [i] ∈ B̃(y, r), then d(x, y) ≤ r + diam(Pi) ≤ 2r. In other words, for all y and all

r > 0,

B(y, r) ⊂ πB̃(y, r) ⊂ B(y, 2r). (3.4.1)

Let Qn be a cover of Λ with balls of radius rn = 1/2n with disjoint interior, denote the collection of

their centres by Yn, and #Qn = #Yn ≤ n. Let τ(Qn, x) be the minimum time for the orbit of x to

have visited each element of Qn at least once,

τ(Qn, x) := min
{
k ∈ N : for all Q ∈ Qn, there exists 0 ≤ j ≤ k : f j(x) ∈ Q

}
.

Then τ1/n(x) ≤ τ(Qn, x) for all n and all x since for all y ∈ Λ, there is Q ∈ Qn and j ≤ τ(Qn, x) such

that f j(x) ∈ Q and y ∈ Q hence d(f j(x), y) ≤ 1/n. Let ε > 0 be an arbitrary number and for each

k ∈ N, set L′(k) = ⌈L(k)+ 1
ρ

(
kα+ε + logC1

)
⌉ where C1, ρ were given in Definition 1.1.5 and ⌈t⌉ takes

the least integer no smaller than t. We have

µ
(
x : τ1/n(x) > en

α+ε

L′(4n)
)
≤ µ

(
x : τ(Qn, x) > en

α+ε

L′(4n)
)

= µ
(
x : ∃y ∈ Yn : f j(x) ̸∈ B(y, 1/2n), ∀j ≤ en

α+ε

L′(4n)
)

≤ µ
(
x : ∃y ∈ Yn : f jL

′(4n)(x) ̸∈ B(y, 1/2n), ∀j ≤ en
α+ε
)

= µ

 ⋃
y∈Yn

en
α+ε⋂

j=1

(
f−jL′(4n)B(y, 1/2n)

)c ≤
∑
y∈Yn

µ

en
α+ε⋂

j=1

(
f−jL′(4n)B(y, 1/2n)

)c .

(3.4.2)

A cylinder [i] in B̃(y, 1/4n) has depth at most L(4n), then by our choice of L′(4n) and the exponentially
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ψ-mixing property of µ̃,

µ(B̃(y, 1/4n) ∩ f−L′(4n)B̃(y, 1/4n)) ≤ (1 + exp(−((4n)α+ε) + logC1)µ(B̃(y, 1/4n)).

Similar calculations holds for µ
(⋂en

α+ε

j=1

(
f−jL′(4n)B(y, 1/2n)

)c)
since the compliment of B̃(y, 1/4n)

can be written as a countable union of cylinders of depths no greater then L(4n).

By (3.4.1), for all z and all r > 0,

∑
y∈Yn

µ

en
α+ε⋂

j=1

(
f−jL′(4n)B(y, 1/2n)

)c ≤
∑
y∈Yn

µ̃

en
α+ε⋂

j=1

(
σ−jL′(4n)B̃ (y, 1/4n)

)c
≤
(
1 + ψ

(
1

ρ

(
(4n)α+ε + logC1

)))en
α+ε ∑

y∈Yn

(
1− µ̃

(
B̃

(
y,

1

4n

)))en
α+ε

≤
(
1 + e−nα+ε

)enα+ε ∑
y∈Yn

(
1− µ

(
B

(
y,

1

4n

)))en
α+ε

.

(3.4.3)

By definition of α, for all n large such that ε
4 log n ≥

(
α+ ε

4

)
log 4, we have

log

(
− logMµ

(
1

4n

))
≤ (α+ ε/4)(log 4n) ≤ (α+ ε/2) log n.

So for all y ∈ supp(µ) and all n large enough,

µ

(
B

(
y,

1

4n

))
≥ e−nα+ε/2

≥ en
ε/2

enα+ε .

As for all u ∈ R and all large k, (1 + u
k )

k ≈ eu, combining (3.4.2) and (3.4.3), for some uniform

constant C2 > 0,

µ
(
x : τ1/n(x) > en

α+ε

L′(4n)
)
≤
(
1 + e−nα+ε

)enα+ε ∑
y∈Yk+1

(
1− e−nα+ε/2

)enα+ε

≤
(
1 + e−nα+ε

)enα+ε

n

(
1− en

ε/2

enα+ε

)en
α+ε

≤ C2 exp
(
log n− en

ε/2
)
.

The last term is clearly summable over n, then by Borel Cantelli, for all n large enough τ1/n(x) ≤

en
α+ε

L′(4n). Since logL′(4n) ≈ (α+ ε) log n≪ nα+ε, we have for µ−a.e. x ∈ Λ,

lim sup
n→∞

log log τ1/n(x)

log n
≤ lim sup

n→∞

log log
(
en

α+ε

L′(4n)
)

log n
≤ α+ ε.

By Remark 3.4.1 this upper bound for lim sup holds for all sequences decreasing to 0, and as ε > 0 was
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arbitrary, we can conclude that for µ-a.e. x ∈ Λ,

lim sup
r→0

log log τr(x)

− log r
= lim sup

n→∞

log log τ1/n

log n
≤ α.

Proposition 3.4.3. Suppose (f, µ) is exponentially ψ-mixing and the lower stretched Minkowski dimen-

sion of µ, dims
M (µ), is finite, then for µ-a.e. x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
≤ dims

M (µ).

Proof. Again for simplicity, denote α := dims
M (µ). Let ε > 0, then by definition of liminf there is a

subsequence nk → ∞ such that for all k,

log(− logMµ(1/nk))

log nk
≤ α+ ε.

Then repeating the proof of Proposition 3.4.2 by replacing n by nk everywhere, one gets that for

µ−almost every x,

lim inf
k→∞

log log τ1/nk
(x)

log nk
≤ α+ ε.

Again send ε → 0, and use the fact that liminf over the entire sequence is no greater than the liminf

along any subsequence, the proposition is proved.

Proof of the inequalities (3.2.3)

Next, we show the almost sure lower bounds which do not require the ψ-mixing property of µ.

Proposition 3.4.4. For µ-almost every x ∈ Λ,

lim inf
r→0

log log τr(x)

− log r
≥ dims

M (µ).

Proof. We continue to use the notation α = dims
M (µ). Let ε > 0 be arbitrary, and by definition of α for

all large n there exists yn ∈ supp(µ) such that µ(B(yn, 1/n)) ≤ e−nα−ε

. Let

T (x, y, r) := inf
{
j ≥ 0 : f j(x) ∈ B(y, r)

}
,
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so for all n ∈ N and all x, τ1/n(x) ≥ T (x, yn, 1/n). Then by invariance,

µ
(
x : τ1/n(x) < en

α−ε

/n2
)
≤ µ

(
x : T (x, yn, 1/n) < en

α−ε

/n2
)

= µ
(
x : ∃ 0 ≤ j < en

α−ε

/n2 : f j(x) ∈ B(yn, 1/n)
)
≤

en
α−ε

/n2−1∑
j=0

µ
(
x : f j(x) ∈ B(yn, 1/n)

)

=

en
α−ε

/n2−1∑
j=0

µ

(
f−jB

(
yn,

1

n

))
≤ en

α−ε

n2
e−nα−ε

=
1

n2
,

which is summable. By Borel-Cantelli, since 2 log n≪ nα−ε, for µ-almost every x

lim inf
n→∞

log log τ1/n(x)

log n
≥ α− ε.

As ε > 0 is arbitrarily small, the proposition is proved.

In a similar way to Proposition 3.4.2 and Proposition 3.4.3,

Proposition 3.4.5. For µ-almost every x ∈ Λ,

lim sup
r→0

log log τr(x)

− log r
≥ dim

s

M (µ).

Proof. Let ε > 0, then by definition of limsup there exists a subsequence {nk}k → ∞ such that for all

k,
log log (−Mµ(1/nk))

log nk
≥ α− ε.

Then repeating the proof of Proposition 3.4.4 along {nk}k, one gets that for µ-almost every x:

lim sup
k→∞

log log τ1/nk
(x)

log nk
≥ α− ε.

As ε was arbitrary,

lim sup
r→0

log log τr(x)

− log r
≥ lim sup

k→∞

log log τ1/nk
(x)

log nk
≥ α

for µ-a.e. x ∈ Λ.

3.5 A non-mixing example: irrational rotations
The proof of Proposition 3.4.2 requires an exponentially ψ-mixing rate which is rather strong (see

Definition 1.1.5). It is natural to ask if the same asymptotic growth in Theorem 3.2.4 remains valid

under different mixing conditions, e.g. exponentially ϕ-mixing and α-mixing, or even polynomial ψ-

mixing. Although these questions are unresolved, in this section we will show in Theorem 3.5.4 that

the lim sup and lim inf of the asymptotic growth rate can differ if the system is not mixing.
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Let θ ∈ (0, 1) be an irrational number and define the rotation map T = Tθ : [0, 1) → [0, 1), T (x) =

x+ θ (mod 1). Denote the one-dimensional Lebesgue measure on [0, 1) by µ, then (T, µ) is an ergodic

probability preserving system with dimM (µ) = 1.

Definition 3.5.1. For a given irrational number θ, the type of Tθ is given by the following number

η = η(θ) := sup
{
ξ : lim inf

n→∞
nξ∥nθ∥ = 0

}
,

where for every r ∈ R, ∥r∥ = minn∈Z |r − n|.

The fact that (Tθ, µ) is non-mixing for all irrational θ ∈ (0, 1) is standard, which can be deduced by

computing the following:

let [a, b) ⊂ [0, 1), and set F := 1[a,b). For each θ there exists nk → ∞ such that ∥nkθ∥ → 0, hence∫
F ◦ Tnk

θ · Fdµ = ||b− a| − ∥nkθ∥| → |b− a|

as k → ∞, hence limn→∞
∫
F ◦ Tn

θ · Fdµ ̸= (
∫
Fdµ)2, hence µ is non-mixing.

Remark 3.5.2. (See [Khi]) For every θ ∈ (0, 1) irrational, η(θ) ≥ 1 and η(θ) = 1 almost everywhere, but

for all real numbers υ ∈ (1,∞], there exist irrational numbers with η(θ) = υ. The Liouville numbers have

η(θ) = ∞.

For any irrational number θ ∈ (0, 1) there is a unique infinite continued fraction expansion

θ = [a1, a2, . . . ] :=
1

a1 +
1

a2+...

,

where ai ≥ 1 for all i ≥ 1. Set p0 = 0 and q0 = 1, and for each i ≥ 1, choose pi, qi ∈ N coprime such

that
pi
qi

= [a1, . . . , ai] =
1

a1 +
1

... 1
ai

.

Definition 3.5.3. The term ai is called the i-th partial quotient and pi/qi the i-th convergent. In partic-

ular, (see [Khi])

η(θ) = lim sup
n→∞

log qn+1

log qn
.

The almost sure cover time for an irrational rotation is given by the theorem below.

Theorem 3.5.4. For any irrational rotation Tθ, for µ-a.e. x,

lim inf
r→0

log τr(x)

− log r
= dimM (µ) = 1 ≤ η(θ) = lim sup

r→0

log τr(x)

− log r
(3.5.1)

Remark 3.5.5. In fact, by the nature of rotation and cover time, (3.5.1) all µ-almost-every statements in

this section can be upgraded to for every x ∈ [0, 1).
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By Remark 3.5.2, there exist irrational rotations such that the asymptotic cover time does not converge.

The proof of this theorem relies on the algebraic properties of η(θ). For simplicity, we fix θ and write η

from now on.

Lemma 3.5.6. [KS, Fact 1, Lemma 7]

(a) qi+2 = ai+2qi+1 + qi and pi+2 = ai+2pi+1 + pi.

(b) 1/(2qi+1) ≤ 1/ (qi+1 + qi) < ∥qiθ∥ < 1/qi+1 for i ≥ 1.

(c) If 0 < j < qi+1, then ∥jθ∥ ≥ ∥qiθ∥.

(d) For each ε > 0, there exists a uniform Cε > 0 such that for all j ∈ N, jη+ε∥jθ∥ > Cε.

We use ideas and results from [KS, Proposition 6, Proposition 10] to prove the following propositions.

Proposition 3.5.7. For µ-a.e. x,

lim sup
r→0

log τr(x)

− log r
≥ η. (3.5.2)

Proof. First it is easy to see that for all r > 0 and all x, y ∈ [0, 1), by the nature of rotation, τr(x) =

τr(y). In particular, τr(x) = τr(Tx), hence the function x 7→ lim supr→0
log τr(x)
− log r is T invariant therefore

constant µ-a.e. by ergodicity of µ.

By [KS, Proposition 10], for almost every x, y

lim sup
r→0

logWB(y,r)(x)

− log r
≥ η,

where WE(x) := inf{n ≥ 1 : Tnx ∈ E} denotes the waiting time of x before visiting E. Hence there

exists a set of strictly positive measure consisting of points that satisfy

lim sup
r→0

log τr(x)

− log r
≥ lim sup

r→0

logWB(y,r)(x)

− log r
≥ η,

since for all y ∈ [0, 1), τr(x) ≥ WB(y,r)(x). As lim supr→0
log τr(x)
− log r is µ-a.e. constant, the inequality

above holds for µ-a.e. x hence the proposition is proved.

Proposition 3.5.8. For µ-a.e. x,

lim sup
r→0

log τr(x)

− log r
≤ η.

Proof. Let Qn := {[2−nj, 2−n(j + 1)) : j = 0, . . . , 2n − 1} and set τ (Qn, x) as the minimum time for x

to have visited each element of Qn. Again, we have τ2−n+1(x) ≤ τ(Qn, x) for all x. By Lemma 3.5.6

(a) and (c), {∥qiθ∥}i is a decreasing sequence, and for each n ∈ N there exists a minimal j such that

∥qjθ∥ < 2−n ≤ ∥qj−1θ∥, write j = jn.
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By [KS, Proposition 6] for all n, there is µ
(
W[0,2−n) > qjn + qjn−1

)
= 0. Notice that for all a, b ∈ [0, 1),

µ{W[a,a+b)(x) = k} = µ
{
{x :W[0,b)(x) = k}+ a

}
= µ

{
W[0,b)(x) = k

}
, (3.5.3)

as µ = Leb is translation invariant. Then by (3.5.3)

µ {τ (Qn, x) > qjn + qjn−1} = µ {x : ∀Q ∈ Qn : WQ(x) > qjn + qjn−1}

= µ

x :
⋃

Q∈Qn

{WQ(x) > qjn−1 + qjn}

 ≤
∑

Q∈Qn

µ (WQ > qjn−1 + qjn)

=

2n−1∑
j=0

µ
(
W[2−nj,2−n(j+1)) > qjn + qjn−1

)
=

2n−1∑
j=0

µ
(
W[0,2−n) > qjn + qjn−1

)
= 0.

Hence by Borel-Cantelli, for all n large enough, τ2−n+1(x) ≤ (qjn + qjn−1) for µ-a.e x ∈ [0, 1).

Let ε > 0, and by Lemma 3.5.6(b) and (d) there exists Cε such that

log (qjn + qjn−1) ≤ log (2qjn) ≤ log
2

∥qjnθ∥
≤ (η + ε) log qjn + log 2− logCε,

Again by Lemma 3.5.6 and our choice of jn, for µ-a.e. x and all n large enough,

log τ2−n+1(x) ≤ log(qjn + qjn−1) ≲ (η + ε) log qjn ≤ −(η + ε) log ∥qjn−1θ∥ ≤ (η + ε)n log 2.

where a ≲ b means a ≤ b up to a uniform constant. Hence lim supn→∞
log τ2−n (x)

n log 2 ≤ η + ε for µ-almost

every x. Again, since for each r < 0 there is a unique n ∈ N for which 2−n < r ≤ 2−n+1, we can apply

the subsequence trick again. As ε > 0 is arbitrarily small, the proposition is proved.

Proposition 3.5.9. For µ-almost every x ∈ [0, 1),

lim inf
r→0

log τr(x)

− log r
= 1.

Proof. Let ε > 0 and using the same arguments in the last proof, i.e., cover time is greater than the

hitting time of the ball of smallest measure at scale r, along the sequence rn = 2−(n+1), one gets that

for all [a− rn, a+ rn) ⊂ [0, 1),∑
n≥1

µ
(
τrn(x) < 2n(1−ε)

)
≤
∑
n≥1

µ
(
x :W[a−2−n−1,a+2−n−1)(x) < 2n(1−ε)

)

≤
∑
n≥1

2n(1−ε)∑
k=0

µ
(
T−k[a− 2−n−1, a+ 2−n−1)

)
=
∑
n≥1

2n(1−ε)2−n =
∑
n≥1

2−εn <∞.
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For each r there is a unique n such that rn < r ≤ rn−1 and limn
log rn

log rn−1
= 1, so by Borel-Cantelli,

lim inf
r→0

log τr(x)

− log r
= lim inf

n→∞

log τ2−n(x)

n log 2
≥ 1− ε, (3.5.4)

and as ε is arbitrarily small, the lower bound for the lim inf is proved.

For the upper bound of liminf, recall that τ (Qn, x) ≥ τ2−n(x), we can repeat the proof of Proposi-

tion 3.5.8, apart from that this time we choose {2−ni}i according to {qi}i∈N: for each i, choose ni ∈ N

to be the smallest number such that

∥qi+1θ∥ < 2−ni ≤ ∥qiθ∥.

Then, as in the proof of Proposition 3.5.8,

µ (τ (Qni , x) > qi+1 + qi) ≤
∑

Q∈Qni

µ (WQ > qi+1 + qi) = 0.

Again by Lemma 3.5.6 (b), qi+1+qi ≤ 2qi+1 ≤ 2
∥qiθ∥ < 2ni+1 by our choice of ni, so limi→∞

log(qi+qi+1)
ni log 2 ≤

1, therefore for µ-a.e. x,

lim inf
r→0

log τr(x)

− log r
≤ lim inf

i→∞

log τ2−ni (x)

ni log 2
≤ lim inf

i→∞

log τ (Qni
, x)

ni log 2
≤ 1.

Combining this with (3.5.4) lim infr→0
log τr(x)
− log r = 1 for µ almost every x.

Theorem 3.5.4 is obtained by combining the three propositions above, and we have therefore shown

that for irrational rotations, which have no mixing properties, the asymptotic limit may not converge

to the Minkowski dimension dim(µ).

3.6 Cover time for flows
In this section we prove an analogous almost sure limit regarding cover times for the same class of

flows that was discussed in [RT, §4].

Let {ft}t be a flow on a metric space (X , d) preserving an ergodic probability measure ν, i.e., ν
(
f−1
t A

)
=

ν(A) for every t ≥ 0 and A measurable. Recall that a point x ∈ X is called non-wandering if for every

open neighbourhood U ∋ x and all T > 0, there exists |t| > T such that ft(U) ∩ U ̸= ∅. Let Ω denote

the non-wandering set and define the cover time of x at scale r by

τr(x) := inf {T > 0 : ∀y ∈ Ω, ∃t ≤ T : d(ft(x), y) < r} .

We will assume the existence of a Poincaré section Y ⊂ X with R :=
∫
RY dν < ∞, where RY (x)
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denotes the first hitting time to Y , i.e., RY (x) := inf{t > 0 : ft(x) ∈ Y }. Define the Poincaré map by

(Y, F, µ) where F = fRY
and let µ be the induced measure on Y . Additionally, assume the following

conditions:

(H1) dimM (µ) exists and is finite for (F, µ),

(H2) (Y, F, µ) is Gibbs-Markov so Theorem 3.2.1 is applicable for µ-almost every y ∈ Y .

(H3) {ft}t has bounded speed: there existsK > 0 such that for all s ∈ R and t > 0, d(fs(x), fs+t(x)) <

Kt.

(H4) {ft}t is topologically transitive and there exists T1 > 0 such that⋃
0<t≤T1

ft(Y ) = X . (3.6.1)

(H5) There exists

Cf := sup {diam(ft(I))/diam(I) : I a connected component in Y, 0 < t ≤ T1} ∈ (0,∞).

Remark 3.6.1. The last condition is satisfied when (H3) holds and the flow is, for example, Lipschitz, i.e.,

there exists L > 0 such that for all x, y ∈ X ,

d(ft(x), ft(y)) ≤ Ltd(x, y).

Theorem 3.6.2. Let (ft, ν) be a measure preserving flow satisfying conditions (H1)-(H5). Then for ν-

almost every x ∈ Ω,

lim inf
r→0

log τr(x)

− log r
≥ dimM (ν)− 1. (3.6.2)

Furthermore, if dimM (ν) = dimM (µ) + 1,

lim sup
r→0

log τr(x)

− log r
≤ dimM (µ) = dimM (ν)− 1 ν-a.e. (3.6.3)

Proof of (3.6.2). This proof is analogous to those of Proposition 3.4.3 and [RT, Theorem 4.1].

Fix some y ∈ Ω and r > 0 and consider the random variable

ST,r(x) :=

∫ T

0

1B(y,r)(ft(x))dt.

Observe that by the bounded speed property, for all T > r/K,

{x : ∃0 ≤ t ≤ T s.t. d(ft(x), y)) < r} ⊂ {S2T,2r(x) > r/K} ,

since if d(fs(x), y) < r for some s, then for all t < r/K, d(ft+s(x), y) < 2r. Also set

T (x, y, r) := inf{t ≥ 0 : ft(x) ∈ B(y, r)},
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and similarly for all r > 0 and all x, z, τr(x) ≥ T (x, y, r).

Let ε > 0 be arbitrary and by definition of α for all large n ∈ N there exists yn ∈ Ω such that

ν(B(yn, 2
−n)) ≤ 2−n(α−ε). By Markov’s inequality, for some Tn > 0 to be decided later,

ν (x : τ2−n(x) < Tn) ≤ ν
(
x : T (x, yn, 2

−n) < Tn
)
= ν

(
x : ∃ 0 ≤ t < Tn : ft(x) ∈ B(yn, 2

−n)
)

≤ ν
(
x : S2Tn,2−n+1(x) > 2−n/K

)
≤ K2n

∫ 2Tn

0

∫
1B(yn−1,2−n+1)(ft(x))dν(x)dt

≤ K2n+1Tnν(B(yn−1, 2
−n+1)) ≤ 4KTn2−(n−1)(α−ε−1).

Choosing Tn = 2(n−1)(α−ε−1)/n2, the last term above is summable along n hence by Borel-Cantelli, for

ν-almost every x

lim inf
r→0

log τr(x)

− log r
≥ lim inf

n→∞

log Tn
n log 2

= α− 1− ε.

Since ε > 0 was arbitrarily small the lower bound is α − 1, and by Remark 3.4.1 the proposition is

proved.

Note that the proof of lower bound is independent of the existence or mixing properties of the Poincaré

map (Y, F, µ). For upper bound, we first prove that the cover time of the Poincaré F in Y is comparable

to the cover time of the flow.

Lemma 3.6.3. Define

τFr (x) := min{n ∈ N0 : ∀y ∈ Y, ∃0 ≤ j ≤ n : d(y, F jx) < r}.

There exists λ = 1
Cf

for Cf defined in (H5) such that τr(x) ≤ T1 +
∑τF

λr(x)
j=0 RY (F

jx).

Proof. This is adapted from the proof of [JT, Lemma 6.4] and [RT, Theorem 2.1]. F is by assumption

Gibbs-Markov so one can find P(r), a natural partition of Y using cylinder sets with respect to F , such

that for each P ∈ P(r): (a) diam(P ) ≤ r/Cf , and (b) for all 0 < t ≤ T1, ft(P ) is connected. Suppose

τFr/Cf
(x) = k, then the orbit {x, F (x), . . . , F k(x)} must have visited every element of P. By (3.6.1) for

each y ∈ Ω there is P ∈ P(r) and 0 < s ≤ T1 such that y ∈ fs(P ) and hence there exists j ≤ k such

that d
(
fs(F

j(x)), y
)
≤ Cf |P | < r. Then set λ = 1/Cf the lemma is proved.

Proof of (3.6.3). Now assume dimM (ν) = dimM (µ) + 1. Let ξ > 0 be arbitrary and define the sets

Uξ,N :=
{
x ∈ Y : |Rn(x)− nR| ≤ ξn, ∀n ≥ N

}
,

where Rn(x) =
∑n−1

j=0 RY (F
j(x)). By ergodicity, limN µ(Uξ,N ) = 1 so for N large, ν(Uξ,N ) > 0 hence
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by invariance,

lim
N→∞

ν

(
ξN⋃
t=0

f−t(Uξ,N )

)
= 1. (3.6.4)

Let ε > 0 be arbitrary. By (3.6.4) one can pick N∗ such that for each ν typical x ∈ X there is some

t∗ ≤ ξN∗ such that ft∗(x) ∈ Y . By Theorem 3.2.1 applied to the Poincaré map and Lemma 3.6.3, for

all sufficiently small r > 0 we have the following two inequalities,

log τFλr(ft∗x)

− log λr
≤ dimM (µ) + ε,

log (τr(x)− T1)

− log r
≤

log
(
(R+ ξ)τFλr(ft∗x)

)
− log r

.

Then as λ,R are constants and ε is arbitrary, for ν-almost every x,

lim sup
r→0

log τr(x)

− log r
≤ dimM (µ) = dimM (ν)− 1.

3.6.1 Example: suspension flow over topological Markov shifts

In this section, we give an example of a flow for which dimM (ν) = dimM (µ) + 1 is satisfied, so (3.6.3)

is applicable.

Consider two-sided Markov subshift of finite type (Σ, σ, ϕ, µ): A a finite alphabet and M = [Mij ]A×A

transition matrix,

Σ :=
{
x = (. . . , x−1, x0, x1, . . . ) ∈ AZ : for all j ∈ Z, xj ∈ A and Mxj ,xj+1 = 1

}
,

σ the usual left shift, ϕ a Hölder potential and µ the unique Gibbs measure with respect to ϕ. We

assume that dimM (µ) ∈ (0,∞). The natural symbolic metric on Σ is ds(x, y) = 2−x∧y, where

x ∧ y = sup{k ≥ 0 : xj = yj , ∀|j| < k}. (3.6.5)

An n-cylinder in this setting is given by
[
x−(n−1), . . . , x0, . . . , xn−1

]
:= {y ∈ Σ, yj = xj ,∀|j| < n}, and

it is a well-known fact that balls in Σ are precisely the cylinder sets. The left-shift map σ is bi-Lipschitz

with Lipschitz constant L = 2. For more detailed description of the shift space, see [Bow, §1].

Let φ ∈ L1(µ) be a positive Lipschitz function, define the space

Yφ := {(x, s) ∈ Σ× R≥0 : 0 ≤ s ≤ φ(x)} / ∼

where (x, φ(x)) ∼ (σ(x), 0) for all x ∈ I. The suspension flow Ψ over σ is the function which acts on

Yφ by

Ψt(x, s) = (σk(x), v),

where k, v ≥ 0 are determined by s+ t = v +
∑k−1

j=0 φ(σ
j(x)). The invariant measure ν for the flow Ψ
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on Yφ satisfies the following: for every g : Yφ → R continuous,∫
gdν =

1∫
Σ
φdµ

∫
Σ

∫ φ(x)

0

g(x, s)dsdµ(x). (3.6.6)

The standard metric on Yφ is the Bowen-Walters distance dY (see for example [BW]). Define an altern-

ative metric dπ on Yφ: for all (x, s), (y, t) ∈ Yφ,

dπ((x, s), (y, t)) := min


d(x, y) + |s− t|,

d(σx, y) + φ(x)− s+ t,

d(x, σy) + φ(y)− t+ s

 , (3.6.7)

the following proposition says dπ is comparable to the Bowen-Walters distance.

Proposition 3.6.4. [BS, Proposition 17] There exists c = cπ such that

c−1dπ((x1, t1), (x2, t2)) ≤ dY ((x1, t1), (x2, t2)) ≤ c dπ((x1, t1), (x2, t2)).

Then the Minkowski dimension of the flow-invariant measure ν is given by the following proposition.

Proposition 3.6.5. For (µ) the Gibbs measure with respect to ϕ on the two-sided subshift and ν the flow

invariant measure, dimM (ν) = dimM (µ) + 1.

Proof. The proof is based on the proof of [RT, Theorem 4.3] for correlation dimensions.

By Proposition 3.6.4 for all r > 0,

(B(x, r/2c)× (s− r/2c, s+ r/2c)) ∩ Y ⊂ BY ((x, s), r)

where BY denotes the ball with respect to the metric dY , and set φ =
∫
Σ
φdµ. Then for all (x, s) ∈ Yφ,

ν(BY ((x, s), r)) ≥ ν(B(x, r/2c)×
(
s− r

2c
, s+

r

2c

)
,

log ν(BY ((x, s), r))

log r
≤

log
(

r
cφµ

(
B(x, r

2c )
))

log r
.

Hence dimM (ν) = lim supr→0
logmin(x,s)∈supp(ν) ν(BY ((x,s),r)

log r ≤ dimM (µ) + 1.

For the lower bound, define

B1 := B(x, cr)× (s− cr, s+ cr), B2 := B(σx, cr)× [0, cr),

B3 :=
{
(y, t) : y ∈ B(σ−1x, 2cr), and φ(y)− cr ≤ t ≤ φ(y)

}
.



70 CHAPTER 3. ALMOST SURE LIMIT THEOREMS FOR COVER TIMES

Then as in the proof of [RT, Theorem 4.3], BY ((x, s), r) ⊂ (B1 ∪B2 ∪B3) ∩ Yφ.

For all r > 0 and (x, s) ∈ Yφ by (3.6.6), and as µ is σ, σ−1 invariant,

ν(B1 ∩ Yφ) = 2crµ(B(x, cr))/φ, ν(B2, Yφ) ≤ crµ(B(x, cr))/φ

ν(B3 ∩ Yφ) ≤ crµ(σ−1B(x, 2cr))/φ = crµ(B(x, 2cr))/φ.

Therefore

ν(BY ((x, s), r) ≤
1

φ
(3rµ(B(x, cr)) + crµ(B(x, 2cr))) ,

which is enough to conclude that dimM (ν) ≥ dimM (µ) + 1. Combining with the upper bound above

we obtain dimM (ν) = dimM (µ) + 1.

Thus by Theorem 3.6.2, for ν the invariant measure of the suspension flow, for ν-almost every (x, t) ∈

Yφ,

lim
r→0

log τr(x, t)

− log r
= dimM (ν)− 1 = dimM (µ),

where µ is the Gibbs measure of the two-sided subshift (Σ, σ, ϕ). We will revisit suspension flows in

the next chapter for the shortest distance problem.



Chapter 4

Limit theorems for shortest distance

problems

In this chapter we show another set of almost sure asymptotic convergence for systems with a ψ-

mixing measure. In fact, the natural candidate of such a measure is a Gibbs measure. We first deal

with symbolic dynamics. Consider a topological Markov shift (Σ, σ) on an (at most) countably infinite

alphabet A with respect to a transition matrix M equipped with the natural symbolic metric ds. The

following quantity is of interest: for each x ∈ Σ,

Mn(x) = max{k : ∃ 0 ≤ i < j ≤ n− 1: xi, . . . , xi+k−1 = xj , . . . , xj+k−1}. (4.0.1)

Mn(x) counts the maximum length of self-repeating subwords in the first n symbols, and in the longest

common substring matching problem we study the asymptotic growth of Mn(x) as n→ ∞. We will first

show that for topological Markov shifts with a Gibbs probability measure µ, Mn(x)/ log n converges µ-

almost surely, and then apply similar techniques to show an analogous statement for interval dynamics.

To give a motivation of the problem, let us first consider a primitive model: coin tosses. One can

ask what is the probability of two identical coins coinciding for K consecutive times, and how large

can such K be. This was solved by Rényi [Ren] with a formula we now call an Erdös-Rényi law.

Another motivation for the substring matching problem comes from matching nucleotide sequences in

DNA which is a shift on four symbols; nucleotide sequences in DNA transcription correspond to the

amino acid chain which ultimately determines the structure of the protein produced by an organism’s

cells. The longer the matchings in substrings of DNA, the more similarities in the protein structure

71
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of the organism. Early results were established in the 80s by Arratia and Waterman’s work [AW].

They considered the length of the longest common substring among two i.i.d. sequences X1, X2, . . .

and Y1, Y2, . . . with different distributions taking letters in a finite alphabet. The longest matching

subsequence with and without shift are defined respectively by

Mn(X,Y ) := sup {k : Xi+m = Yj+m for all m = 1 to k and 1 ≤ i, j ≤ n− k} ,

Rn(X,Y ) := sup {k : Xi+m = Yi+m for all m = 1 to k and 1 ≤ i ≤ n− k} ,

and they satisfy an Erdős-Rényi law

P

(
lim
n→∞

Mn

log n
=

2

log 1/p

)
= 1, P

(
lim
n→∞

Mn

Rn
= 2

)
= 1, (4.0.2)

where p = P(X1 = Y1) is the collision probability. The quantity − logP(X1 = Y1) is often called the

collision entropy or Rényi entropy. Analogous convergence results as (4.0.2) are generalised to Markov

processes and matching with ‘scores’, see [DKZa],[DKZb].

The same problem can easily be translated to the topological shifts context: for (Σ, σ) a countable or

finite Markov subshift with an invariant probability measure µ, we study the µ× µ-a.e. growth of

Mn(x, y) := sup {k : ∃ 0 ≤ i, j ≤ n− 1: xi, . . . , xi+k−1 = yj , . . . , yj+k−1} .

In [BLR], the authors show that for µ× µ-almost every (x, y) ∈ Σ× Σ,

lim sup
n→∞

Mn(x, y)

log n
≤ 2

H2

,

and if the measure µ is α-mixing (see Definition 1.1.5) with exponential decay or ψ-mixing with

polynomial decay, then

lim inf
n→∞

Mn(x, y)

log n
≥ 2

H2

, µ× µ-a.e.

The quantities H2, H2 (see Definition 4.1.1) are called the upper and lower Rényi entropies, which are

generalisations of the collision entropy log 1/p in (4.0.2). This almost sure result is later generalised

for orbits generated by k µ-typical points, for k ∈ N\{1} [BR21], and random shift systems [GRS]. The

question is, does an analogous almost sure convergence hold for single points orbit case, i.e., substitute

Mn(x, y) by Mn(x) as defined in (4.0.1).

The analogous problem for Mn(x) is more difficult due to lack of independence and short returns,

the latter in symbolic context refers to the overlapping phenomena which will be discussed soon. For

subshifts of finite type, Collet et al in [CGR] applied first and second-moment analysis to the counting

random variable N(x, n, rn), which counts the number of matches of strings of length rn among the
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first n iterates in x. They then showed that for H2 the Rényi entropy of a Gibbs measure µ, for all ε > 0,

lim
n→+∞

µ

(∣∣∣∣Mn(x)

log n
− 2

H2

∣∣∣∣ > ε

)
= 0.

That is, Mn(x)
logn converges to 2

H2
in probability for typical x. Then one may ask if this result can be im-

proved to almost sure convergence, or if the convergence remains valid when the alphabet is countably

infinite. The answer is given in Theorem 4.2.1.

4.1 Rényi entropy
Let A be a countable or finite alphabet and Σ a topological Markov subshift defined by the transition

matrix M = [Mij ]A×A. Recall that Cn denotes the set of n-cylinders in Σ.

Definition 4.1.1 (Rényi entropy). For each n ∈ N, t > 0, define the quantities

Fn(t) =
∑
C∈Cn

µ(C)1+t.

The upper and lower Rényi entropy (with respect to the natural partition given by the alphabet A) of the

system are defined respectively by

H2(µ) := lim sup
n→∞

logFn(1)

−n
, H2(µ) := lim inf

n→∞

logFn(1)

−n
,

and write H2(µ) whenever these coincide. The generalised Rényi entropy function is

Rµ(t) = lim inf
n→+∞

logFn(t)

−tn
.

In the information theory context, this is also called collision entropy, as it reflects the probability of two

i.i.d. random variables coinciding in value. Therefore, heuristically, the probability of a k-matching

i.e., Xm+j = Yn+j for j = 1, . . . , k, is roughly e−kH2 .

Rényi entropy does not always exist, especially when the alphabet is not finite1. For the finite alphabet

case, Haydn and Vaienti proved in [HV, Theorem 1] that Rµ(t) converges uniformly on compact

subsets of R+ for all weakly ψ-mixing invariant measures, in particular, if µ is a Gibbs measure,

H2(µ) = Rµ(1) = 2P (ϕ)−P (2ϕ) where P is the topological pressure defined in (1.2.1). We now show

the formula for Gibbs measures for countable Markov shifts.

Lemma 4.1.2. Let (Σ, σ, ϕ) be a countable Markov shift with the BIP property, ϕ a locally Hölder potential

such that P (ϕ) < ∞, and µ the unique (up to multiplicative constants) Gibbs probability measure for ϕ.

1For infinite alphabet Markov chains, Rényi entropy is calculated in [GGL].
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Then the Rényi entropy H2(µ) is finite and well defined for µ and is explicitly given by

H2(µ) = 2P (ϕ)− P (2ϕ),

where P is the Gurevich pressure defined in (1.3.1).

Proof. We first show thatH2 andH2 coincide for µ. Recall that for a real-valued potential ϕ, vark(ϕ) :=

sup {|ϕ(x)− ϕ(y)| : xi = yi, for all i = 1, . . . , k − 1}. As µ is a Gibbs measure for the potential ϕ, the

constant B1(ϕ) :=
∑

k≥1 vark(ϕ) must be finite. Then if x, y ∈ C for some C ∈ Cn, |Snϕ(x)−Snϕ(y)| ≤

B1. By the Gibbs property (see (1.2.4)) for G the Gibbs constant and P = P (ϕ), for all n, k ∈ N since

every allowable word of length n + k must be some concatenation of a length n word and a length k

word,

Fn+k(1) =
∑

C∈Cn+k

µ(C)2 ≤ G2
∑

C∈Cn+k

exp (2 (Sn+kϕ(x)− (n+ k)P ))

≤ G2
∑

C∈Cn,D∈Ck

C∩σ−nD ̸=∅

exp

(
sup
x∈C

2 (Snϕ(x)− nP )

)
exp

(
sup
y∈D

2(Skϕ(y)− kP )

)

≤ G2e4B1

∑
C∈Cn,D∈Ck

exp (2 (Snϕ(x)− nP )) exp (2 (Skϕ(y)− kP )) ≤ G4e2B1Fn(1)Fk(1),

where x, y in the sums are simply arbitrary points in the cylinders. So logFn(1) is almost subadditive

hence limn→∞
logFn(1)

−n = sup logFn(1)
−n exists. Therefore, to show that the limit is finite, it suffices to

find a subsequence converging to a finite constant, as every convergent subsequence of a convergent

sequence must converge to the same limit.

For some x ∈ Σ, let Ck(x) denote the unique k-cylinder containing x. Suppose x is a periodic point

with period k, then for all n obviously µ(Cnk(x))
2 ≤ Fnk(1) =

∑
C∈Cnk

µ(C)2. As Snkϕ(x) = nSkϕ(x),

2 (Skϕ(x)/k − P ) = lim inf
n→∞

−2 logG+ 2 (Snkϕ(x)− nkP )

nk
≤ lim inf

n→∞

logFnk(1)

nk
= lim inf

n→∞

logFn(1)

n
.

Since |Skϕ(x)/k|, P (ϕ) are bounded, we get limn
logFn(1)

−n is finite.

Combining the BIP property and the locally Hölder property of ϕ with [Sar1, Lemma 4] one can show

that

lim sup
n→∞

1

n
log

∑
C∈Cn

exp

(
sup
x∈C

2Snϕ(x)

)
≤ P (2ϕ)

which implies

lim sup
n→∞

1

n
log
∑
C∈C

µ(C)2 ≤ lim sup
n→∞

1

n
G2e−2nP (ϕ)

∑
C∈Cn

exp

(
sup
x∈C

2Snϕ(x)

)
≤ P (2ϕ)− 2P (ϕ).
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Also for each C ∈ Cn, there is at most one x ∈ C such that σnx = x, thus∑
C∈Cn

µ(C)2 ≥G−2e−2nP (ϕ)
∑
C∈Cn

exp

(
sup
x∈C

2Sn(ϕ(x))

)
≥G−2e−2nP (ϕ)

∑
σnx=x∈C

C∈Cn, C⊆[a]

exp (2Snϕ(x)) = G−2e−2nP (ϕ)Fn(2ϕ, a).

This implies

lim inf
n→∞

1

n
log

∑
C∈Cn

µ(C)2 ≥ P (2ϕ)− 2P (ϕ).

Then putting the inequalities for lim sup and lim inf together,

H2 = lim
n→+∞

log
∑

C∈Cn
µ(C)2

−n
= 2P (ϕ)− P (2ϕ).

Remark 4.1.3. It is also easy to see that H2(ν) ≤ 2h(ν) for all ergodic invariant probability measure ν:

for all x and all n ∈ N,
logFn(1)

−n
≤ 2 log ν(Cn(x))

−n
.

By the Shannon-McMillan-Breiman Theorem, the left hand side converges to 2h(ν) for almost every x,

therefore lim supn
logFn(1)

−n ≤ h(ν). So the Rényi entropy is finite whenever the measure-theoretic entropy

of ν is finite.

4.2 Longest substring matching of one-point orbit
Here we present the main theorem for almost sure asymptotic growth of Mn(x).

Theorem 4.2.1. Let (Σ, σ, ϕ, µ) be a topologically mixing countable (or finite) Markov subshift with the

BIP property, and ϕ a locally Hölder (or Hölder) potential admitting a Gibbs measure µ. Then for µ-a.e.

x ∈ Σ,

lim
n→∞

Mn(x)

log n
=

2

H2(µ)
. (4.2.1)

We will use first and second moment estimation methods together with the Borel-Cantelli lemma to

prove separately that

lim sup
n→+∞

Mn(x)

log n
≤ 2

H2(µ)
, (4.2.2)

lim inf
n→+∞

Mn(x)

log n
≥ 2

H2(µ)
. (4.2.3)

We will continue the habit of denoting a dimension-like object in proofs by α, but this time α = H2

2 .

The following lemma is crucial for approximating the values of Fn(t).

Lemma 4.2.2. For a countable Markov shift (Σ, σ, ϕ, µ) satisfying the assumptions of Theorem 4.2.1, we
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have α > 0 and

Fk(1) =
∑
C∈Ck

µ(C)2 ≈ e−2kα, (4.2.4)

and for each t > 2,

Fk(t− 1) =
∑
C∈Ck

µ(C)t ⪯ e−tkα. (4.2.5)

Proof. Let bn := maxC∈Cn
µ(C), then

∑
C∈Cn

µ(C)2 ≤ bn
∑

C∈Cn
µ(C) ≤ K0β

n where K0 > 0, β ∈

(0, 1) were given by Lemma 1.1.6, hence

lim sup
n→∞

logFn(1)

−n
≥ lim sup

n→∞

− log bn
−n

≥ − log β > 0.

The approximation formulae (4.2.4)(4.2.5) are from [CGR, Lemma 2.13]. They were originally proved

for finite alphabets and the proof remains valid for countable cases if one combines with [HV, Theorem

1 (IV)], which holds whenever the relevant measure admits exponential decay of cylinder measures.

4.2.1 Proof of Theorem 4.2.1

We first prove the upper bound which requires approximating the measure of points of certain recur-

rence times, and a first moment summation. The proof for lower bound is similar but involves a second

moment argument.

Proof of upper bound (4.2.2). Set α = H2(µ)
2 and

rn :=
1

α− ε
(log n+ log log n) .

As Mn(x) = rn implies the return time of some iterate of x under σ to some rn-cylinder is strictly less

than n, we need to approximate the size of short return sets in the system in order to apply Borel-

Cantelli Lemmas to obtain almost everywhere statements. Hence, as in [HV] and [CGR], we intend to

solve this by considering different cases of overlapping between rn-substrings in x.

Overlapping Analysis

Let n ∈ N. If rn is not an integer, we simply take the closest integer. For each k ∈ N, define the

following auxiliary sets.

Sk(rn) =
{
x ∈ Σ : σkx ∈ Crn(x)

}
.
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To put it into words, Sk(rn) is the set of points whose return time to the rn-cylinder containing itself

is k. Then by construction,

µ (x : Mn(x) ≥ rn) = µ
({
x ∈ Σ : ∃ 0 ≤ i ≤ n− 1, 1 ≤ k ≤ n− i− 1 s.t. ds(σix, σi+kx) ≤ 2−rn

})
≤ µ

(
n−1⋃
i=0

n−i−1⋃
k=1

σ−iSk(rn)

)
,

(4.2.6)

where ds(·, ·) is the symbolic metric defined in (1.1.2).

In order to obtain good estimates of µ(Sk(rn)), we consider three separate cases according to the

values of k. Let

Σ0 := µ

n−1⋃
i=0

⌊rn/2⌋⋃
k=1

σ−iSk(rn)

 .

Similarly, set

Σ1 := µ

n−1⋃
i=0

rn⋃
k=⌊rn/2⌋+1

σ−iSk(rn)

 ,

and

Σ2 := µ

(
n−1⋃
i=0

n−i−1⋃
k=rn+1

σ−iSk(rn)

)
.

Then (4.2.6) is replaced by

µ(Mn ≥ rn) ≤ Σ0 +Σ1 +Σ2. (4.2.7)

We will show that the measure of Σ0, Σ1 are insignificant compared with Σ2.

Σ0: return time 1 ≤ k ≤ ⌊rn/2⌋

Notation. For any finite k-subword of x starting from j, xj , xj+1, . . . , xj+k−1, write x(j, k). For each

ω ∈ N, x(j, k)ω means that particular subword is repeated ω-times consecutively whenever it is allowed

by the transition matrix.

Let ωk = ⌊ rn
k ⌋ and 0 ≤ γk < k so that rn = kωk + γk. Then if x ∈ σ−iSk(rn), xj = xl if j = l (mod k)

for all j, l ∈ [i, i+ rn + k − 1], therefore σix has the following form:

σi(x) = (x(i, k), x(i, k), . . . , x(i, k)︸ ︷︷ ︸
k-word repeating ωk + 1 times

, x(i, γk), . . . ) =
(
x(i, k)ωk+1, x(i, γk), . . .

)
.

That is, a k-word (xi, . . . , xi+k−1) will be repeated fully for ωk + 1 times, followed by a truncated

γk-word with the same initial symbols.
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xi xj

xi+ωkk−1

xi+rn−1

xj

xj+ωkk−1

xj+rn−1

Figure 4.1: Overlapping for points in Σ0; each segment stands for one copy of the repeated word.

Note that for each given i and all k < k′ ≤ ⌊rn/2⌋ − i, if k divides k′, then σ−iSk(rn) ⊂ σ−iSk′(rn).

Since for each k ≤ ⌊rn/2⌋, there is some minimum ℓk ∈ [⌈rn/4⌉, ⌊rn/2⌋] such that ℓk is a multiple of k

so that x ∈ σ−iSk(rn) ⊆ σ−iSℓk(rn) where the ℓk word is fully repeated ωℓk + 1 ≤ 5 times.

Recall that µ is ψ-mixing, and so it is quasi-Bernoulli in the sense for some uniform constant B > 1,

for any words w1, w2 such that [w1w2] ̸= ∅, µ ([w1w2]) ≤ Bµ([w1])µ([w2]). Therefore for each k ∈

[⌊rn/4⌋, ⌊rn/2⌋], by the quasi-Bernoulli property of ψ-mixing measures,

µ
(
{x : σi+k(x) ∈ Crn(σ

ix)}
)
= µ(Sk(rn)) ≤ µ(Sℓk(rn)) ⪯ B6

∑
Cℓk

∈Cℓ

µ(Cℓ)
ωℓk

+1βγk ≤ B6Fℓk(ωℓk),

where β is a given by Lemma 1.1.6. As rn ≤ ℓk(ωℓk + 1), e−αℓkωk ≤ e−αrn , by definition of rn and

(4.2.5),

Fℓk(ωk) ⪯ e−αrn ≤ exp (− log n− log log n) ≤ 1

n log n
.

To reduce again the redundant terms we have to sum up for Σ0, for each i ≤ n−1 and 1 ≤ k ≤ ⌊rn/2⌋,

we can omit σ−iSk(rn) if 2k ≤ n−i−1, which follows from again σ−iSk(rn) ⊆ σ−iS2k(rn). Considering

all those discussed above, for Σ0 we only need to consider points x such that σix has short return time

i.e., k ≤ rn/2 and i ≥ n− rn. As rn is of the scale of log n, we may choose n large such that rn ≤ n1/2

so that by Lemma 4.2.2,

Σ0 =
∑

i≥n−rn

∑
k≥1

σ−iSk(rn) ≤ B6

⌊rn/2⌋∑
k=1

kFℓk(ωℓk) ⪯ B6r2ne
−αrn ≤ B6r2n

n log n
⪯ 1

log n
. (4.2.8)

Σ1: return time ⌊rn/2⌋+ 1 ≤ k ≤ rn

In this case, x ∈ σ−iSk(rn) implies xj = xl if j = l (mod k) for all j, l ∈ [i, i+ rn + k − 1], hence σi(x)

has the form

σi(x) = (x(i, rn − k), x(i+ rn − k, 2k − rn), x(i, rn − k), x(i+ rn, 2k − rn), x(i, rn − k), xi+rn+k, . . . . . . )

shown by the following illustration (same colour implies the same subword repeated), so the (rn − k)

word starting from xi is repeated three times, separated by two identical (2k − rn) words. Hence by
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xi xi+rn−1

xj xj+rn−1

Figure 4.2: Overlapping of subwords for points in Σ1

Lemma 4.2.2 and the quasi-Bernoulli property,

µ(σ−iSk(rn)) = µ(Sk(rn)) ≤ B6
∑

C∈Crn−k

D∈C2k−rn

µ(C)3µ(D)2 = B6Frn−k(2)F2k−rn(1).

Then we obtain an upper bound for Σ1:

Σ1 ≤B6
rn∑

k=⌊rn/2⌋+1

(n− k)Frn−k(2)F2k−rn(1) ⪯ B6
rn∑

k=⌊rn/2⌋+1

(n− k)e−α3(rn−k)e−α2(2k−rn)

=B6
rn∑

k=⌊rn/2⌋+1

(n− k)e−α(rn+k) ⪯ B6e−
3
2 rnα

rn∑
k=⌊rn/2⌋+1

(n− k) ⪯ rnne
− 3

2αrn

≤ nrn
(n log n)3/2

≤ n1/2n

(n log n)3/2
≤ 1

log n
.

(4.2.9)

Σ2: return time rn + 1 ≤ k ≤ n− i− 1

In this case, k − rn ≥ 1 and x ∈ σ−iSk(rn) implies x(i, rn), the rn-word starting from position i of x,

is repeated from the i+ k entry without any overlapping with itself, i.e.

σi(x) = (x(i, rn), x(i+ rn, k − rn), x(i, rn)︸ ︷︷ ︸
rn-word repeated with k − rn gap

, . . . ).

xi xi+rn−1 xj xj+rn−1

Figure 4.3: Overlapping for points in Σ2; black segment represents an arbitrary word of length rn − k

Then by the ψ-mixing property, the measure of such set of points is bounded by

µ
(
σ−iSk(rn)

)
≤ (1 + ψ(k − rn))

∑
C∈Crn

µ(C)2 = (1 + ψ(k − rn))Frn(1).

Hence

Σ2 ≤
n−1∑

k=rn+1

(n− k)µ(Sk(rn)) ≤
n−1∑

k=rn+1

(n− k)(1 + ψ(k − rn))Frn(1).
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Again (1 + ψ(k)) is monotonically decreasing in k,

Σ2 ≈ e−2αrn

n−1∑
k=rn+1

(n− k)(1 + ψ(k − rn)) ≤ (1 + ψ(1))e−2αrn

n−1∑
k=rn+1

(n− k)

≤(1 + ψ(1))e−2αrnn2 ≤ 1 + ψ(1)

(log n)2
≤ 1 + ψ(1)

log n
.

(4.2.10)

Then, combining (4.2.7)-(4.2.10), there is some constant K1 > 0 independent of n such that

µ ({Mn > rn}) ≤ K1
1

log n
.

Using the technique in the proof of [BLR, Theorem 5], we pick a subsequence nk = e⌈k
2⌉ so for all k

large enough,

µ({Mnk
> rnk

}) ≤ K1
1

k2
.

Then by the Borel-Cantelli Lemma, for µ-almost every x ∈ Σ,

Mnk
(x) ≤ rnk

,

which implies that for all k large enough,

Mnk
(x)

log nk
≤ 1

α− ε

(
1 +

log log nk
log nk

)
.

Since Mn(x) is non-decreasing in n for all x, for each n, there is a unique k such that nk ≤ n < nk+1.

In particular,
log nk

log nk+1
· Mnk

(x)

log nk
≤ Mn(x)

log n
≤
Mnk+1

(x)

log nk+1
· log nk+1

log nk
, (4.2.11)

As limk→+∞
lognk+1

lognk
= 1 and limk→+∞

log lognk

lognk
= 0, taking the lim sup of the inequalities above,

lim sup
n→+∞

Mn(x)

log n
= lim sup

n→+∞

Mnk
(x)

log nk
≤ 1

α− ε
.

(4.2.2) is proved by since ε > 0 is arbitrarily small.

Proof of lower bound (4.2.3). We apply a similar second-moment analysis as in the proof of [CGR,

Theorem 4.1]. Let

rn =
1

α+ ε
(log n+ λ log log n)

for some uniform constant λ < 0 to be determined later. Since σi+kx ∈ Crn(σ
ix) if and only if

x ∈ σ−iSk(rn), then we can define the random variable Sn:

Sn(x) :=

n−2rn−1∑
i=0

n−i−1∑
k=2rn

1{Crn (σix)}(σ
i+kx) =

n−2rn−1∑
i=0

n−i−1∑
k=2rn

1{σ−iSk(rn)}(x), (4.2.12)
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which counts the number of times that x belongs to some σ−iSk(rn). As Mn(x) < rn implies for all

0 ≤ i ≤ n − 1, 1 ≤ k ≤ n − i − 1, x /∈ σ−iSk(rn), and in particular not in the σ−iSk(rn) sets with

k ≥ 2rn,

{x :Mn(x) < rn} ⊆ {x : Sn(x) = 0}.

By the Paley-Zygmund inequality,

µ({Mn < rn}) ≤ µ({Sn = 0}) = 1− µ ({Sn > 0}) ≤ Var[Sn]

E[S2
n]

≤ Var[Sn]

E[Sn]2
. (4.2.13)

By definition of σ−iSk(rn) with k ≥ 2rn, this set corresponds to the set of points in which an rn-word

repeats itself at least once with at least an rn gap, therefore we have the following lower bound using

the ψ-mixing property,

µ
(
{Crn(σ

ix) = Crn(σ
i+kx)}

)
=µ
(
σ−iSk(rn)

)
=
∑

C∈Crn

µ(C ∩ σ−kC)

≥(1− ψ(k − rn))
∑

C∈Crn

µ(C)2 ≥ (1− ψ(rn))Frn(1).

Therefore, as
∑n−2rn−1

i=0

∑n−i−1
k=2rn

1 = (n− 2rn − 1) + (n− 2rn − 2) + · · · 1,

E[Sn] ≥
1

2
(1− ψ(rn))(n− 2rn)

2Frn(1). (4.2.14)

Next, we need to consider

E[S2
n] =

n−2rn−1∑
i,j=0

n−i−1∑
k=2rn

n−j−1∑
l=2rn

µ(σ−iSk(rn) ∩ σ−jSl(rn)). (4.2.15)

Define the index set

I :=
{
(i, j, k, l) ∈ N4 : 0 ≤ i, j ≤ n− 2rn − 1, 2rn ≤ k ≤ n− i− 1, 2rn ≤ l ≤ n− j − 1

}
,

then

E[S2
n] =

∑
(i,j,k,l)∈I

µ(σ−iSk(rn) ∩ σ−jSl(rn)), (4.2.16)

and the cardinality of I satisfies

#I =

(
n−2rn−1∑
i=2rn

n− i

)n−2rn−1∑
j=2rn

n− j

 ≤ 1

4
(n− 2rn)

4.

Define the counting function by

θ : I → N, θ(i, j, k, l) =
∑

a∈{i,i+k}
b∈{j,j+l}

1(a−rn,a+rn)(b),
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i.e., it counts the occurrences that two indices in {i, j, i + k, j + l} are rn-close to each other. θ > 0

implies there are overlaps between some rn words, e.g. |i − j| < rn implies the rn word x(i, rn)

overlaps with the rn word x(j, rn), and both rn-strings are repeated later.

By our definition of Sn, for each quadruple (i, j, k, l), necessarily k, l ≥ 2rn which implies

0 ≤ θ(i, j, k, l) ≤ 2, ∀(i, j, k, l) ∈ I,

which allows us to split (4.2.16) again into three components,

E[S2
n] =

(∑
I0

+
∑
I1

+
∑
I2

)
µ
(
σ−iSk(rn) ∩ σ−jSl(rn)

)
,

where It = {(i, j, k, l) ∈ I : θ(i, j, k, l) = t}.

Clearly,

#I0 ≤ #I ≤ 1

4
(n− 2rn)

4.

For each (i, j, k, l) ∈ I1, if we fix any three indices, for example, if i, j, k are fixed, j + l can be rn-close

to either i or i + k as it is automatically 2rn-apart from j, hence there are at most 4rn choices for the

remaining index l. Hence

#I1 ≤ 2rn(n− 2rn)
3,

and similarly if we fix any two of i, j, k, l in I2, there are at most 2r2n choices for the remaining two

indices, therefore

#I2 ≤ 2r2n(n− 2rn)
2.

Contributions of indices in I0:

We will consider the sum over indices in I0 first. Since (i, j, k, l) ∈ I0 implies no overlapping, x ∈

σ−iSk(rn) ∩ σ−jSl(rn) implies x(i, rn) = x(i+ k, rn) and x(j, rn) = x(j + l, rn) while the symbols in

these two rn-strings are independent, e.g. when i+ k < j, x has the following form:

σi(x) = (x(i, rn), . . . , x(i, rn), . . . , x(j, rn), . . . , x(j, rn), . . . ) .

Hence by ψ-mixing property

µ(σ−iSk(rn) ∩ σ−jSl(rn)) ≤ (1 + ψ(γi j k l))
3Frn(1)

2, (4.2.17)

where

γi j k l = min {|a− b| − rn : a, b ∈ {i, j, i+ k, j + l}} .

Let I ′0 ⊆ I0 be defined as

I ′0 := {(i, j, k, l) ∈ I0 : γijkl ≥ rn},
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and I ′′0 := I0 \ I ′0. Notice also that #(I ′′0 ) ≤ 2rn(n− 2rn)
3.

Define the notation for any G ⊆ I,

E[S2
n|G] :=

∑
i,j,k,l∈G

µ
(
σ−iSk(rn) ∩ σ−jSl(rn)

)
.

Then, using (4.2.17),

E[S2
n|I ′0] =

∑
i,j,k,l∈I′

0

µ
(
σ−iSk(rn) ∩ σ−jSl(rn)

)
≤ (n− 2rn)

4(1 + ψ(rn))
3Frn(1)

2,

By Lemma 1.3.7 ψ(rn) ≤ r−1
n for all n large enough, then

(1 + ψ(rn))
3 − (1− ψ(rn))

2 ≤ (1 + ψ(rn))
3 − (1− ψ(rn))

3

= 6ψ(rn) + 2ψ(rn)
3 ≤ 8r−1

n ≤ 8(α+ ε)

log n+ λ log log n
⪯ 1

log n
.

(4.2.18)

It is easy to see that #(I ′0) ≤ 1
4 (n−2rn)

4. Using (4.2.14) with (4.2.18), as (1−ψ(rn))2 ≥
(
1− r−1

n

)2 ≥
1
4 , for some constant K2 > 0,

E[S2
n|I ′0]−E[Sn]

2

E[Sn]2
≤

(n− 2rn)
4Frn(1)

2
(
(1 + ψ(rn))

3 − (1− ψ(rn))
2
)

(n− 2rn)4(1− ψ(rn))2Frn(1)
2

≤ (1 + ψ(rn))
3 − (1− ψ(rn))

3

(1− ψ(rn))2
≤ K2

1

log n
.

(4.2.19)

For the sum over I ′′0 , the term 1 + ψ(γijkl) in (4.2.17) is uniformly bounded above by 1 + ψ(0), and

1− ψ(rn) ≥ 1
2 for all n sufficiently large, therefore

E[S2
n|I ′′0 ]

E[Sn]2
≈ rn(n− 2rn)

3(1 + ψ(0))3Frn(1)
2

(1− ψ(rn))2(n− 2rn)4Frn(1)
2

⪯ rn
n− 2rn

hence for some K3 > 0 and all n sufficiently large,

E[S2
n|I ′′0 ]

E[Sn]2
≤ K3

1

log n
(4.2.20)

Contributions of indices in I1:

Next, for (i, j, k, l) ∈ I1, without loss of generality, suppose only |i−j| = r < rn, i < j and i+k < j+ l.

The other cases are treated exactly the same since the order of the rn-strings does not have any effects

on estimations of the upper bounds for µ(σ−iSk(rn) ∩ σ−jSl(rn)).

An x ∈ σ−iSk(rn) ∩ σ−jSl(rn) means xi+r = xj , xi+r+1 = xj+1, . . . , xi+rn = xj+r, so σix has the
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following form:

σi(x) = (xi, . . . , xi+r−1, xj , . . . , xj+rn−1, . . . , xi+k, . . . , xj+l, . . . )

= (x(i, r), x(j, rn − r), x(i+ rn, r), . . . , x(i, r), x(j, rn − r), . . . , x(j, rn − r), x(i+ rn, r), . . . ) .

Again using the quasi-Bernoulli property and (4.2.4),(4.2.5), for B ≥ 1 the relevant quasi-Bernoulli

constant, since there are nine concatenations of words as explained above (we can count the number

of commas),

µ(σ−iSk(rn) ∩ σ−jSl(rn)) ≤ B9
∑

A,B∈Cr
C∈Crn−r

µ(A)2µ(B)2µ(C)3 = B9Fr(1)
2Frn−r(2)

⪯ B9e−4αrne−3α(rn−r) ≤ B9e−3αrn .

Recall that rn = 1
α+ε (log n+ λ log log n) and

e−αrn =
(
n(log n)λ

)− α
α+ε = n−

α
α+ε (log n)−

αλ
α+ε . (4.2.21)

For all n large enough such that
n

α
α+ε

(n− 2rn)
≤ 1, (4.2.22)

by (4.2.14) and (4.2.22) above,

E[S2
n|I1]

E[Sn]2
⪯ 2rn(n− 2rn)

3B10e−3αrn

(n− 2rn)4(1− ψ(rn))2Frn(1)
2

≈ rne
−3αrn

(n− 2rn)e−4αrn
=

1

α+ ε

log n+ λ log log n

(n− 2rn)e−αrn

⪯ log n

(n− 2rn)e−αrn
=

n
α

α+ε

n− 2rn
(log n)1+

λα
α+ε

≤ (log n)(1+λ(1− ε
α+ε )).

For all 0 < ε ≤ α, 1 − ε
α+ε ≥ 1

2 , so we can choose λ = −4 so that 1 + λ
(
1− ε

α+ε

)
≤ −1. It is then

sufficient to conclude that for some constant K4 > 0,

E[S2
n|I1]

E[Sn]2
≤ K4

1

log n
. (4.2.23)

Contributions of indices in I2:

Finally for indices in I2, an x ∈ σ−iSk(rn) ∩ σ−jSl(rn) has very complicated overlapping behaviour

in the subwords x(i, rn) and x(j, rn). But this can be trivially and happily reduced to considering that

some rn-subword is repeated twice from the i−th entry and the (i + k)-th entry without overlapping

each other. Using Lemma 4.2.2, we bound the measure of σ−iSk(rn)∩σ−jSl(rn) for each (i, j, k, l) ∈ I2
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by

B4
∑

C∈Crn

µ(C)2 ≈ B4e−2αrn .

The number of indices in I2 can be bounded by 2r2n(n − 2rn)
2. Then for λ = −4 and all n verifying

(4.2.22), by (4.2.14), (4.2.21) and the fact that rn ⪯ log n,

E[S2
n|I2]

E[Sn]2
⪯ 2r2n(n− 2rn)

2B4e−2αrn

(n− 2rn)4(1− ψ(rn))2e−4αrn

≈ r2n
(n− 2rn)2e−2αrn

⪯ n
2α

α+ε

(n− 2rn)2
(log n)2+2 λα

α+ε

≤ (log n)2(1+λ(1− ε
α+ε )) ≤ (log n)−2.

It follows that for some constant K5 > 0,

E[S2
n|I2]

E[Sn]2
≤ K5

1

(log n)2
. (4.2.24)

Then, combining (4.2.13) (4.2.16) (4.2.19)-(4.2.24), there is some constant K6 > 0 such that

µ({Mn < rn}) ≤ K6
1

log n
.

We can repeat the trick of picking a subsequence nk = ⌈ek2⌉, and apply the Borel-Cantelli Lemma to

the sum
∑∞

k=1 µ({Mnk
< rnk

}) < +∞, which means for all k large enough,

Mnk
(x)

log nk
≥ 1

α+ ε

(
1− 4 log log nk

log nk

)
.

Taking the liminf on both sides and applying the subsequence argument (4.2.11),

lim inf
n→+∞

Mn(x)

log n
= lim inf

n→+∞

Mnk
(x)

log nk
≥ 1

α+ ε
.

Thus (4.2.3) holds as ε > 0 is arbitrarily small.

Therefore, for (Σ, ϕ, σ) a topologically mixing countable Markov subshift where ϕ is a locally Hölder

potential and µ the corresponding unique Gibbs measure,

lim
n→∞

Mn(x)

log n
=

2

H2(µ)
for µ-almost every x ∈ Σ.

4.3 Shortest distance problem for Gibbs-Markov interval maps
We will say goodbye to our great friend symbolic dynamics and consider a general compact metric

space (X, d) with f : X → X. One can study the shortest distance between iterates of typical points.

For two orbits generated by typical points, we wish to prove the limiting behaviours for the following
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quantity:

mn(x, y) := min
0≤i,j≤n−1

d
(
f ix, f jy

)
.

For symbolic systems with the natural symbolic metric ds, Mn(x, y) = − logmn(x, y)/ log 2. The quant-

ity mn(x, y) is related to various objects, e.g. the correlation integral, extremal value theory with clus-

tering phenomena, shrinking target problems; and as cover times in Chapter 3, this problem is linked

to hitting times:

writing Wr(x, y) := inf
{
j ≥ 1 : f jx ∈ B(y, r)

}
, Wr(x, y) ≤ n implies mn(x, y) < r.

Also note that if mLY
n (x, y) := min0≤i<n d

(
f ix, f iy

)
, then one can see this is closely linked to Li-Yorke

pairs and one might expect limn→∞
mLY

n (x,y)
mn(x,y)

= 1
2 almost surely.

Coming back to mn, the first almost sure result concerning its asymptotic growth was given in [BLR],

the same paper dealing with almost sure growth of substring matching, the authors proved the follow-

ing theorem.

Theorem 4.3.1. [BLR, Theorem 1,Theorem 3] Let (X, d, f, µ) be a probability preserving system such

that D2(µ) > 0. Then for µ× µ almost every (x, y),

lim sup
n→∞

logmn(x, y)

− log n
≤ 2

D2(µ)
.

Furthermore, if (X, d) is tight2 and (f, µ) has polynomial decay of correlations (see Definition 4.3.3

below),

lim inf
n→∞

logmn(x, y)

− log n
≥ 2

D2(µ)
.

Subsequent research, just as in the previous section for substring matching in symbolic dynamics,

proves analogous statements for multiple orbits and random dynamics [BR21][GRS]. The notion of

decay of correlations will be defined in Definition 4.3.3. In the theorem above, the quantities D2(µ)

and D2(µ) are called correlation dimensions, which are generalisations of the Rényi entropies.

Definition 4.3.2. Let (X, d) be a metric space and µ a probability measure on the Borel sets in X. The

upper and lower correlation dimensions of µ are

D2(µ) = lim sup
r→0

log
∫
µ(B(x, r)) dµ(x)

log r
, D2(µ) = lim inf

r→0

log
∫
µ(B(x, r)) dµ(x)

log r

respectively, and we write D2(µ) when the two limits coincide.

2The terminology is inherited from [BLR], which is similar to the notion of doubling for metric spaces: a metric space is tight
if there exists r0 > 0, N0 ∈ N such that for every 0 < r < r0 and all x ∈ X, the ball B(x, 2r) can be covered by at most N0

number of r-balls. This is similar to the notion of bounded local complexity discussed before Lemma 4.3.5.
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Clearly, if X ⊂ R and Leb is the Lebesgue measure then D2(Leb) = 1. If µ is an acip with a bounded

density function then D2(µ) = 1 as well. The aim of this section is to prove the following theorem,

which is a twinned statement of Theorem 4.2.1 for Gibbs-Markov maps defined in Example 3.3.1, but

we allow that the alphabet of the corresponding symbolic shift to be countably infinite. Let X be

a closed interval in R and f : X → X a Gibbs-Markov map as in Example 3.3.1, with a countable

partition. A Gibbs-Markov f admits an invariant probability measure µ with the Gibbs property, and

by [You] µ has exponential decay of correlations and verifies the CLT.

Definition 4.3.3. Say f : X → X has exponential (or polynomial) decay of correlation for BV against

L1 observables, where BV := {f ∈ L1(µ) : f has bounded variation.}, if there is ρ : N → R with

ρ(n) = C1e
−c1n or (ρ(n) = C1n

−c1) for some C1, c1 > 0, and for all ϕ, φ : X → R, f ∈ BV and g ∈ L1,∣∣∣∣∫ ϕ · φ ◦ fn dµ−
∫
ϕdµ

∫
φdµ

∣∣∣∣ ≤ ∥ϕ∥BV∥φ∥1ρ(n)

where the norm ∥ϕ∥BV := ∥ϕ∥1 + TV(ϕ), and TV(ϕ) is the total variation of ϕ. For 1E an indicator

function of some measurable E ⊆ X, ∥1E∥BV = 2 and ∥1E∥1 = µ(E).

A messier decay of correlations for multiple functions will be proved later in Lemma 4.3.12. The main

theorem of this section is stated below.

Theorem 4.3.4. Let X be a closed interval of R, (X, f) a Gibbs-Markov system and µ a Gibbs probability

measure admitting exponential decay of correlations for L1 against BV observables. Then if its upper

correlation dimension D2(µ) is bounded away from 0,

lim inf
n→∞

logmn(x)

− log n
≥ 2

D2(µ)

for µ−almost every x in the repeller Λ. If µ is absolutely continuous with respect to the Lebesgue measure,

then

lim
n→∞

logmn(x)

− log n
=

2

D2(µ)
µ-a.e.

In this case, as the invariant density (with respect to Lebesgue) is bounded, D2(µ) = D2(µ) = 1.

This theorem is applicable to the following systems.

Example 4.3.1 (k-multiplying maps). f : [0, 1] → [0, 1], f(x) = kx (mod 1) for k = 2, 3, . . . , and

µ = Leb. In these cases the uniform k-Bernoulli measure µ̃ on {1, . . . , k}N0 satisfies µ = π∗µ̃ for all

cylinder sets, and Bernoulli measures are clearly Gibbs and ψ-mixing.

Example 4.3.2 (Piecewise affine interval maps). Let {ak}k be a monotone decreasing sequence with
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a1 = 1 and limk ak = 0. Then f : [0, 1] → [0, 1] with

f |[ak+1,ak) =
1

ak − ak+1
(x− ak+1)

satisfies the assumptions of Theorem 4.3.4.

Example 4.3.3 (Gauss Map). Define the Gauss map G : [0, 1] → [0, 1] by

G(x) =


1

x
(mod 1) x ∈ (0, 1] ,

0 x = 0.

It is a full-branched map. Let µG be the Gauss measure, which is the Gibbs measure for the potential

− logDF with density dµG

dLeb = 1
(1+x) log 2 which is bounded for all x ∈ (0, 1]. Then Theorem 4.3.4 holds

for (G,µG).

Example 4.3.4 (An induced map). Let F be the first return function to [0, 12 ) of a Manneville–Pomeau

map f : [0, 1] → [0, 1]:

f(x) =

x(1 + 2axa) x ∈ [0, 1/2) ,

2x− 1 x ∈ [1/2, 1) .

for a ∈ (0, 1). There exists µF a Gibbs probability measure with respect to the potential − log |DF |

(see [LSV]) and is an acip.

As in the symbolic setting, the one-point orbit case involves short return behaviour which complicates

things slightly: approximating short return to balls is crucial for obtaining the upper bound of logmn(x)
− logn ,

that is also generally harder than the recurrence analysis of cylinders. Another challenge appearing

here but not for the symbolic setting is that the open balls defined by the Euclidean metric and the

cylinders generated by the natural partitions disagree, and for points located on the boundary of

adjacent cylinder sets, their symbolic representation may not be unique.

For Λ the repeller (see (3.2.1) for definition) of a Gibbs-Markov map f and d(x, y) = |x − y|, (Λ, d)

trivially satisfies the bounded local complexity condition: (X, d) has bounded local complexity if there

exists C0 ∈ N such that for each r > 0, there is k(r) <∞, and {xr1, xr2, . . . , xrk(r)} ⊆ X such that

X ⊂
k(r)⋃
p=1

B
(
xrp, r

)
and each x ∈ X belongs to at most C0 elements of {B(xrp, 2r)}

k(r)
p=1 . Any compact subset of R has

bounded local complexity: compact implies totally bounded which gives k(r) <∞ for all r and C0 can

be chosen to be 4 because one can choose an r-net such that d(xri , x
r
j) ≥ r for i ̸= j ∈ {1, . . . , k(r)}.

The property verifies an alternative way to compute D2(µ). The following lemmas are analogous to
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[GRS, Lemma 12, Lemma 13].

Lemma 4.3.5. For all x, y ∈ X, let 1p,r := 1B(xr
p,2r)

. If X has bounded local complexity,

1B(x,r)(y) ≤
k(r)∑
p=1

1p,r(x)1p,r(y) ≤ C01B(x,4r)(y)

Proof. Given r > 0 and x ∈ X, as ∪pB
(
xrp, r

)
is a cover ofX, there is at least one p ∈ {1, . . . , k(r)} such

that d(x, xrp) < r. Then if d(x, y) < r, d(y, xrp) < 2r hence 1 = 1p,r(x)1p,r(y) and the left inequality is

proved.

On the other hand, by bounded local complexity, there are at most C0 elements of p ∈ {1, . . . , k(r)}

such that 1p,r(x) ̸= 0, and for each such p, 1p,r(y) ̸= 0 implies d(x, y) < 4r, which proves the right

inequality.

Lemma 4.3.6. The following identities hold.

lim sup
r→0

log
∑k(r)

p=1

(∫
1p,rdµ

)2
log r

= D2(µ), lim inf
r→0

log
∑k(r)

p=1

(∫
1p,rdµ

)2
log r

= D2(µ), (4.3.1)

which means for any ε > 0, there is r0 > 0 such that for all 0 < r < r0,

rD2(µ)+ε ≤
k(r)∑
p=1

(∫
1p,r dµ

)2

≤ rD2(µ)−ε. (4.3.2)

Proof. Proof for this lemma can be readily adapted from the proof of [GRS, Lemma 13].

4.3.1 Proof of Theorem 4.3.4

Define the following quantities inspired by [GRS],

ϵ(n) = (log n)2

m≤
n (x) := min

0≤i<j<n
|i−j|≤ϵ(n)

d
(
f ix, f jx

)
,

m>
n (x) := min

0≤i<j<n
|i−j|>ϵ(n)

d
(
f ix, f jx

)
,

m≫
n (x) := min

0≤i≤n/3
2n/3≤j<n

d
(
f ix, f jx

)
,

Obviously, mn(x) = min
{
m≤

n (x),m
>
n (x)

}
≤ m≫

n (x) for all x ∈ Λ and n ∈ N. Then under the

conditions of Theorem 4.3.4, we prove the following.

Proposition 4.3.7. Let T : X → X be a Gibbs-Markov map defined above, and µ its invariant Gibbs

measure admitting exponential decay of correlations for BV against L1 observables, then one has for
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µ-every x ∈ Λ,

lim sup
n→∞

logm>
n (x)

− log n
≤ 2

D2

. (4.3.3)

If µ is absolutely continuous with respect to Lebesgue measure, D2 = D2 = 1, and

lim sup
n→∞

logm≤
n (x)

− log n
≤ 2

D2
, (4.3.4)

for µ-almost every x ∈ Λ.

Proposition 4.3.8. For all Gibbs measures µ, for µ-almost every x ∈ Λ,

lim inf
n→∞

logm≫
n (x)

− log n
≥ 2

D2

. (4.3.5)

Putting these two propositions together imply Theorem 4.3.4, i.e., if µ is an acip,

lim
n→∞

logmn(x)

log n
= 2

µ-almost every x ∈ Λ.

The proof of (4.3.3) is basically a practice of applying decay of correlations, whereas the proof of

(4.3.4) requires estimating the measures of sets of short return points. During the proof we will

see also that (4.3.3) and (4.3.5) hold for all Gibbs invariant measures with exponential decay of

correlations and D2(µ) > 0. Also for Gibbs acip µ, the correlation dimension is well-defined in the

sense that D2(µ) = D2(µ) = 1, because the invariant density with respect to Lebesgue measure is

uniformly bounded; hence D2(µ) = D2(Leb).

Also, for simplicity of calculation, the following definition is introduced in [GRS].

Definition 4.3.9. A term is said to be admissible if it has the form r−kg(n), for some k ≥ 0 and a function

g which decays in n faster than any polynomial of n, hence for any k ∈ N, by (4.3.2) and choosing the

scale of r as in (4.3.6) below we can bound any admissible error by O(n−k) for all n large.

Proof of (4.3.3). Let ε, r > 0 be given, in particular, r should be small enough that it satisfies (4.3.2).

Define the random variable S>
n ,

S>
n (x) :=

k(r)∑
p=1

∑
0≤i<j<n
|i−j|>ϵ(n)

1p,r

(
f ix
)
1p,r

(
f jx

)
.

By Lemma 4.3.5, {m>
n (x) ≤ r} ⊆ {S>

n ≥ 1}. Therefore, by Markov’s inequality and decay of correla-
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tion,

µ(x : S>
n (x) ≥ 1) ≤ E[S>

n ] =
∑

0≤i<j<n
j−i>ϵ(n)

k(r)∑
p=1

∫
1p,r

(
f ix
)
1p,r

(
f jx

)
dµ(x)

≤
∑

0≤i<j<n
j−i>ϵ(n)

k(r)∑
p=1

((∫
1p,r dµ

)2

+ ρ(ϵ(n))∥1p,r∥BV∥1p,r∥1

)

≤
∑

0≤i<j<n

rD2−ε +
∑

0≤i<j<n

k(r)∑
p=1

∥1p,r∥BV∥1p,r∥1ρ(ϵ(n))

≤ n2rD2−ε + C1e
−c1(logn)2n2

k(r)∑
p=1

2µ(B(xp, 2r))

≤ n2rD2−ε + 2C0C1e
−c1(logn)2n2,

where the penultimate line holds due to (4.3.2), and the last inequality follows from the definition of

bounded local complexity. As e−c1(logn)2 decays faster than any polynomial of n, replace all r terms

above with

rn = exp

(
− 2 + 2ε

D2 − ε
(log n+ log log n)

)
≤ n

− 2+2ε
D2−ε , (4.3.6)

for all n sufficiently large,

n2r
D2−ε
n + 2C0C1n

2e−c1(logn)2 ≤ n−2ε + C1e
−c1(logn)2r−C2

n .

The second term on the right is admissible by definition, thus there is some constant C2 > 0 such that

for all n large enough that n−ε ≤ 1
logn :

µ(m>
n (x) ≤ r) ≤ E[S>

n ] ≤ C2n
−ε ⪯ 1

log n
.

Applying Borel-Cantelli to a subsequence nk as in Section 4.2.1, eventually for µ-a.e. x,

logm>
nk
(x)

− log nk
≤ 2 + ε

D2 − ε

(
1 +

log log nk
log nk

)
.

Although m>
n is not monotonically increasing, for each n ∈ [ns, ns+1], we define

− logm′
nk+1

(x) := − log min
0≤i<j<nk+1

j−i>ϵ(nk)

≥ − logm>
n (x),− logm′′

nk
(x) := − log min

0≤i<j<nk

j−i>ϵ(nk+1)

≤ − logm>
n (x).

(4.3.7)

By modifying the arguments we have done so far, one can show exactly that, for µ-almost every x, for

all k large,
− logm′

nk
(x)

log nk
≤ 2 + ε

D2 − ε

(
1 +

log log nk
log nk

)
,
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and
− logm′′

nk
(x)

log nk
≤ 2 + ε

D2 − ε

(
1 +

log log nk
log nk

)
.

By (4.3.7), these limits can be passed to the whole tail of m>
n . As ε > 0 is arbitrarily small, (4.3.3) is

proved.

Note also that for |i − j| relatively large, the measure of the sets
{
x : d

(
f ix, f jx

)
< r
}

scales like

rD2 which is similar to the sequence matching problem in the symbolic setting, and this matches our

intuition because D2(µ) is analogous to H2 in some ways.

To prove (4.3.4), we need to deal with iterates of x which return to an r-neighbourhood of itself within

ϵ(n) iterations, so again we need to approximate the measure of some short return sets as those Sm(k)

sets defined in Section 4.2.1 for the symbolic case. But we cannot expect a similar upper bound for

short returns as in (4.2.8) or (4.2.9). This is because for symbolic structures, an rn-cylinder is itself

an rn open ball with respect to the symbolic metric, so analysing the returns is equivalent to analysing

the repetition of letters in cylinders and one does not need to consider the case that two iterates σi(x),

σj(x) are close to the boundaries of two open balls with a common boundary but belong to different

cylinders.

For interval maps, although the Gibbs-Markov structure prescribes a natural partition hence a way to

define cylinders, the metric balls and symbolic cylinders are different objects so one needs to take more

caution and include the case that two points belong to different cylinders U, V ∈ Pn but accumulate on

a common boundary of U, V with distance smaller than the contraction scale of n-cylinders. Luckily,

for Gibbs-Markov maps there is the following lemma.

Lemma 4.3.10. [HNL, Lemma 3.4] Define the sets

En(r) := {x ∈ X : |x− fnx| ≤ r} .

Then for f satisfying Gibbs-Markov property with the invariant Gibbs measure µ absolutely continuous

with respect to Lebesgue measure and with exponential decay of correlation for BV against L1 observables,

there is some constant C3 such that for all n ∈ N and r small enough,

µ (En(r)) ≤ C3r.

Proof. The original lemma states that m (En(r)) ⪯ r, and since m is equivalent to µ on Λ with dµ/dm

bounded away from 0 and +∞, there is a uniform constant Cµ such that

C−1
µ m(A) ≤ µ(A) ≤ Cµm(A)
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for each measurable A; therefore there is some C3 > 0 such that

µ (En(ϵ)) ≤ C3ϵ.

Proof of (4.3.4). Define the random variable S≤
n by

S≤
n (x) :=

n−1∑
i=0

ϵ(n)∧(n−i−1)∑
k=1

1B(fix,r)(f
i+kx),

where a ∧ b = min{a, b}.

As
{
x : 1B(fix,r)

(
f i+k(x)

)
= 1
}

⊆
{
x : f ix ∈ Ek(r)

}
= f−iEk(r), using the Markov inequality and

Lemma 4.3.10 we obtain the following bound:

µ(S≤
n ≥ 1) ≤ Em[S≤

n ] ≤
n−1∑
i=0

ϵ(n)∧(n−i−1)∑
k=1

µ(f−iEk(r)) ≤ nϵ(n)C3r

Pick r = rn as in (4.3.6), for all n large enough such that

ϵ(n) = (logn)2 ≤ n
ε

2−ε , n− ε
2−ε ≤ 1

log n
.

As the invariant density dµ/dm is uniformly bounded, D2(µ) = 1 < 2, one has

µ (x : mn(x) ≤ rn) ≤ C3n
1+ ε

2−ε r ≤ n
2

2−εC3n
− 2+2ε

D2−ε ≤ C3n
− ε

2−2ε ⪯ 1

log n
.

Therefore, by picking a subsequence nk = ⌈ek2⌉, by Borel-Cantelli Lemma we have that µ{x : mnk
≤

rnk
for infinitely many k} = 0, so for µ-almost every x, for all k large enough,

m≤
nk
(x) ≥ rnk

.

We then repeat the subsequence trick to obtain (4.3.4) for µ-almost every x.

Remark 4.3.11. The condition that µ is an acip may be not sharp; if ν is another invariant probability

measure with exponential decay of correlation and satisfies ν(Ek(r)) ≈ r, then Proposition 4.3.7 remains

valid.

As in the symbolic case the proof for the lower bound of logmn(x)
− logn is slightly more complicated and also

requires a second-moment computation which exploits the following notion of mixing.

Lemma 4.3.12. The unique Gibbs measure µ with respect to the geometric potential − log |Df | for a

Gibbs-Markov interval map f has exponential 4-mixing, that is, for a < b ≤ c in N, there are C ′
1, c

′
1 > 0
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such that for all u1, u2 ∈ BV, u3, u4 ∈ L∞, such that∣∣∣∣∫ u1 (u2 ◦ fa)
(
u3 ◦ f b

)
(u4 ◦ f c) dµ−

∫
u1 (u2 ◦ fa) dµ

∫
u3
(
u4 ◦ f c−b

)
dµ

∣∣∣∣ ≤ C ′
1e

−c′1(b−a).

The constant C ′
1 depends on the functions ui. In particular, for any given r > 0, 0 ≤ p, q ≤ k(r),

u1 = u2 = 1p,r, u3 = u4 = 1q,r, the constant C ′
1 does not depend on r.

Proof. Consider the transfer operator L associated with the geometric potential − log |Df |, that acts

on the space of functions of bounded variation, BV = BV(X),

L = L : BV → BV, Lu(x) =
∑
Ty=x

e− log |Df(y)|u(y).

Let ν be the eigenmeasure of L and h the invariant density, dµ
dν = h. By the following well-known

fact, (see for example [Kel1, (3)]) for topologically mixing Gibbs-Markov maps, there are CBV > 0,

κ ∈ (0, 1) such that for any u ∈ BV,∥∥∥∥Lnu− h

∫
u dν

∥∥∥∥
BV

≤ CBV · κn∥u∥BV .

Then,∣∣∣∣∫ u1 (u2 ◦ fa)
(
u3 ◦ f b

)
(u4 ◦ f c) dµ−

∫
u1 (u2 ◦ fa) dµ

∫
u3
(
u4 ◦ f c−b

)
dµ

∣∣∣∣
=

∣∣∣∣∫ Lb−a(hu1u2 ◦ fa)(u3 ◦ fa) (u4 ◦ f c−b+a) dν −
∫
hu1(u2 ◦ fa) dν

∫
h (u3 ◦ fa) (u4 ◦ f c−b+a) dν

∣∣∣∣
=

∣∣∣∣∫ (Lb−a (hu1u2 ◦ fa)− h

∫
hu1u2 ◦ fa dν

)
u3 ◦ fa u4 ◦ f c−b+a dν

∣∣∣∣
≤
∥∥∥∥Lb−a(hu1u2 ◦ fa)− h

∫
hu1u2 ◦ fa dν

∥∥∥∥
1

∥u3∥∞∥u4∥∞

≤CBV · κb−a∥hu1u2 ◦ fa ∥BV∥u3∥∞∥u4∥∞, (⋆)

where ∥ · ∥1 denotes the L1 norm with respect to ν, and the first equality holds by the duality of ν.

hu1u2 ◦ fa is of bounded variation because h is of bounded variation, and the product of functions in

BV has bounded variation, and the first part of the lemma is proved.

Now we deal with the case where ui’s are indicator functions 1p,r or 1q,r, and find a suitable upper

bound for

∥h1p,r1q,r ◦ fa∥BV = ∥h1p,r1q,r ◦ fa∥1 + TV(h1p,r1q,r ◦ fa).

For the 1-norm, ∫
|h1p,r1q, r ◦ fa| dν ≤ ∥h∥∞.
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For the total variation, first recall that for any functions u, v ∈ BV,

TV(uv) ≤ ∥u∥∞TV(v) + ∥v∥∞TV(u).

Then, as for any indicator function 1p,r, TV(1p,r) ≤ 2, we have

TV(h1p,r1q,r ◦ fa) ≤ ∥h∥∞TV(1p,r1q,r ◦ fa) + ∥1p,r1q,r ◦ fa∥∞

≤ ∥h∥∞(∥1p,r∥∞TV(1q,r) + ∥1q,r ◦ fa∥∞TV(1p,r)) + TV(h)

≤ 4∥h∥∞ + ∥h∥BV .

Therefore, for any p, q and r > 0, if u1, u3 = 1p,r and u2, u4 = 1q,r, (⋆) is bounded from above by

CBV 5∥h∥∞ κb−a.

Proof of lower bound in Theorem 4.3.4

Now we can finish the remaining proof of Theorem 4.3.4 which, similar to that of Theorem 4.2.1,

involves a second moment argument where the 4-mixing property becomes useful.

Proof of (4.3.5). Let ε > 0 small be given. Consider the quantity m≫
n and the random variable S≫

n :

m≫
n (x) := min

0≤i≤n/3
2n/3≤j<n

d
(
f ix, f jx

)
, S≫

n (x) :=
∑

0≤i≤n/3
2n/3≤j<n

k(r)∑
p=1

1p,r(f
ix)1p,r(f

jx).

By Lemma 4.3.5, m≫
n (x) > 4r implies for all pairs of 0 ≤ i ≤ n

3 , 2n
3 ≤ j < n, if for some p, d(f ix, xrp) <

2r, then d(f jx, xrp) ≥ 2r hence S≫
n (x) = 0. By the Paley-Zygmund inequality,

µ (mn > 4r) ≤ µ
(
x : S≫

n (x) = 0
)
≤ E[(S≫

n )2]−E[S≫
n ]2

E[S≫
n ]2

.

Using decay of correlations and invariance of µ,

E[S≫
n (x)] =

∑
0≤i≤n/3
2n/3≤j<n

∑
p

∫
1p,r(f

ix)1p,r(f
jx) dµ(x) ≤

(n
3

)2∑
p

((∫
1p,r dµ(x)

)2

+ 2ρ (n/3)

)
.

(4.3.8)

Consider (
S≫
n (x)

)2
=
∑
i,j

∑
s,t

∑
p,q

1p,r(f
ix)1p,r(f

jx)1q,r(f
sx)1q,r(f

tx).

As in the proof of symbolic case, we will split this sum in terms of the distance between the indices

i, j, s, t. Recall that

ϵ(n) = (logn)2.
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Let Q be the collection of all possible quadruples of indices (i, j, s, t), and define the counting function

τ : Q→ N ∪ {0}, τ(i, j, s, t) =
∑

a∈{i,s}
b∈{j,t}

1[a−ϵ(n),a+ϵ(n)](b).

Then τ ≤ 2 since i, j and s, t are at both at least n
3 iterates apart. This allows us to split Q into

Qm := {(i, j, s, t) ∈ F : τ = m} for m = 0, 1, 2. Obviously, the following upper bounds hold for the

cardinality of each Qm,

#Qm ≤ (2ϵ(n))
m
(n
3

)4−m

. (4.3.9)

Recall the notation

E[
(
S≫
n

)2 |Qm] =
∑

(i,j,s,t)∈Qm

∑
p,q

∫
1p,r(f

ix)1p,r(f
jx)1q,r(f

sx)1q,r(f
tx) dµ(x),

also for simplicity, let

Rp =

∫
1p,r dµ = µ(B(xp, 2r)).

Contribution of indices in Q0:

For each (i, j, s, t) ∈ Q0, without loss of generality, suppose i + ϵ(n) < s and j + ϵ(n) < t, as the al-

ternative cases can be treated equally by exchanging the roles of i, s or j, t which makes no difference

to the calculation. As min{j, t} − max{i, s} ≥ n
3 , by Lemma 4.3.12 and invariance, one obtains the

following upper bound for each such quadruple (i, j, s, t):

∑
p,q

∫
1p,r(f

ix)1p,r(f
jx)1q,r(f

sx)1q,r(f
tx) dµ

=
∑
p,q

∫
1p,r1q,r ◦ fs−i1p,r ◦ f j−i1q,r ◦ f t−i dµ

≤ C ′
1e

−c′1
n
3 k(r)2 +

∑
p,q

∫
1p,r1q,r ◦ fs−i dµ

∫
1p,r1q,r ◦ f t−j dµ

≤ C ′
1e

−c′1
n
3 k(r)2 +

∑
p

∑
q

(RpRq + 2ρ(ϵ(n)))
2

≤ C ′
1e

−c′1
n
3 r−2C′

0 + 8ρ(ϵ(n))r−2C′
0 +

∑
p,q

(RpRq)
2
.

The last inequality holds as Rp, Rq ≤ 1 for any p, q, and by [GRS, Lemma 3.3] k(r) ≤ r−C′
0 for some

C ′
0 = 4 logC0. Any term in the inequality above involving ρ(ϵ(n)) or C ′

1e
−c′1

n
3 is admissible, hence for

each k ∈ R it is bounded by O(n−k) for all n sufficiently large, and now we pick

r = rn = n
− 2−4ε

D2+ε .
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Then by (4.3.2)

rD2+ε ≤
∑
p

(∫
1p,r dµ

)2

=
∑
p

R2
p. (4.3.10)

Therefore, the contribution of indices in Q0 is bounded from above up to an admissible error by

(n
3

)4∑
p

∑
q

R2
pR

2
q ≤

(n
3

)4∑
p

R2
p

∑
q

R2
q =

(n
3

)4(∑
p

R2
p

)2

,

combining with (4.3.8), up to an admissible error term,

E[(S≫
n )2|Q0]−E[S≫

n ]2 ⪯ (n−ε).

Also by (4.3.8), as ρ(n3 ) is admissible we can bound it by n−3,

E[S≫
n ]2 ≥

(n
3

)4 (
rD2+ε
n − 2ρ(

n

3
)
)
≥
(n
3

)4
(n−2−4ε − n−3)2 ≈ n8ε

allowing us to conclude that there is some constant C4 > 0:

E[(S≫
n )2|Q0]−E[S≫

n ]2

E[S≫
n ]2

≤ C4

nε
. (4.3.11)

Contributions of indices in Q1:

Now we will deal with the indices in Q1. Without loss of generality, suppose |i − s| ≤ ϵ(n), i < s and

j < t, the other cases can be treated by exchanging the roles of i, s or j, t. By invariance, Lemma 4.3.12

and decay of correlations, for i, j, s, t ∈ Q1,∑
p,q

∫
1p,r(f

ix)1p,r(f
jx)1q,r(f

sx)1q,r(f
tx) dµ(x)

=
∑
p,q

∫
1p,r1q,r ◦ fs−i1p,r ◦ f j−i1q,r ◦ f t−i dµ

≤ C ′
1e

−c′1
n
3 k(r)2 +

∑
p,q

(∫
1p,r1q,r ◦ f t−j dµ

)∫
1p,r(x)1q,r(f

s−ix) dµ(x)

≤ C ′
1e

−c′1
n
3 r−2C′

0 + 2ρ(ϵ(n)) +
∑
p,q

(RpRq)

∫
1p,r(x)1q,r(f

s−ix) dµ(x).
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Using Cauchy-Schwarz inequality, the last line can be bounded by the following up to an admissible

error (recall Definition 4.3.9)∑
p,q

∫
RpRq1p,r(x)1q,r(f

s−ix) dµ(x)

=

∫ ∑
p

Rp1p,r(x)
∑
q

Rq1q,r(f
s−i) dµ(x)

≤

∫ (∑
p

Rp1p,r(x)

)2

dµ

 1
2
∫ (∑

q

Rq1q,r ◦ fs−i

)2

dµ

 1
2

=

∫ (∑
p

Rp1p,r

)2

dµ,

where the last line is by symmetry and invariance. Notice that for all real numbers a1, . . . , am ≥ 0,

(a1 + a2 + · · ·+ am)
2 ≤ m

(
a21 + a22 + . . . , a2m

)
.

By bounded local complexity assumption, there are at most C0 non-zero terms in {1p,r(x)}k(r)p=1 for any

x ∈ X, and (1p,r)
2 ≤ 1p,r,(∑

p

Rp1p,r

)2

dµ ≤
∫
C0

∑
p

R2
p1p,r dµ =

∑
p

C0R
2
p

∫
1p,r dµ = C0

∑
p

R3
p.

As (a1 + · · ·+ am)
2
3 ≤

∑m
k=1 a

2
3

k , clearly
∑

k ak ≤
(∑

k a
2/3
k

)3/2
, there exists some constant C5 such

that for all n large enough with ϵ(n) ≤ nε,

E[(S≫
n )2|Q1]

E[S≫
n ]2

≤
2ϵ(n)(n3 )

3C0

(∑
pR

2
p

) 3
2

(n3 )
4(
∑

pR
2
p − 2ρ(ϵ(n)))2

=
6ϵ(n)C0

(∑
pR

2
p

) 3
2

n

((∑
pR

2
p

)1/2
− 4ρ(ϵ(n))

(∑
pR

2
p

)−1/2

+ 4ρ(ϵ(n))2
(∑

pR
2
p

)−3/2
)

≤ 6C0ϵ(n)

n
(
(rD2+ε)1/2 −O(n−1)

) =
6C0ϵ(n)

n ((n−1+2ε −O(n−1))

≤ C5n
ε

n · n−1+2ε
=
C5

nε
,

(4.3.12)

because (
∑

pR
2
p)

− 3
2 4ρ(ϵ(n)) and

(∑
pR

2
p

)− 1
2

ρ(ϵ(n)) are both admissible errors.
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Contribution of indices in Q2:

Finally, let us consider indices (i, j, s, t) such that |i−s|, |j−t| ≤ ϵ(n). By Lemma 4.3.5,
∑

q 1q,r(f
sx)1q,r(f

tx) ≤

C0 for any x, therefore for each i, j, s, t in Q2,∑
p,q

∫
1p,r(f

ix)1p,r(f
jx)1p,r(f

sx)1p,r(f
tx) dµ(x)

≤ C0

∑
p

∫
1p,r(f

ix)1p,r(f
jx) dµ(x)

≤ C0

∑
p

R2
p + C0ρ

(n
3

)
k(r).

Therefore, as #Q2 ≤ 4
9ϵ(n)

2n2, by our choice of rn in (4.3.10), up to an admissible error there is some

constant C6 such that,

E[(S≫
n )2|Q2]

E[S≫
n ]2

≤
4ϵ(n)2(n3 )

2C0

∑
pR

2
p

(n3 )
4(
∑

pR
2
p − 2ρ(ϵ(n)))2

=
36C0ϵ(n)

2

n2
(∑

pR
2
p − 4ρ(ϵ(n)) + 4ρ(ϵ(n))2

(∑
pR

2
p

)−1
)

≤ 36C0n
2ε

n2
(
rD2+ε −O(n−2)

)
≤ C6n

2ε

n2n−2+4ε
=

C6

n2ε
.

(4.3.13)

Hence, putting (4.3.11), (4.3.12) and (4.3.13) together, we can conclude that for all n large enough

and r = rn = n
− 2−4ε

D2+ε , there is some constant C7 > 0 such that

µ(m≫
n > 8rn) ≤

Var[S≫
n ]

E[S≫
n ]2

≤ C7

nε
.

Picking a subsequence nk = ⌈k2/ε⌉, the probability is summable along the subsequence which means

that by the Borel-Cantelli Lemma, for µ-almost every x, for k large

− logm≫
n (x) ≥ − log 4rnk

.

The proof of (4.3.5) is yet complete because m≫
n is not a monotone sequence so we need to repeat the

trick at the end of the Proof of (4.3.3). For each n ∈ [nk, nk+1], define

− logm≫
n (x) ≥ − log min

0≤i≤nk

2nk+1/3≤j<nk

d
(
f ix, f jx

)
=: − logm∗

nk
(x).

As for all k, m≫
nk+1

(x) ≤ m∗
nk
(x), repeating the same proof we have done for m≫

n one can also show

that lim infk→∞
logm∗

nk

lognk
≥ 2−4ε

D2+ε
, such a lower bound can be passed to the entire tail of − logm≫

nk
(x),
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and then − logmn(x). We can conclude

lim inf
n→∞

logmn(x)

− log n
≥ 2

D2

for µ-almost every x since ε > 0 was arbitrarily small.

Remark 4.3.13. (4.3.3) and (4.3.5) still hold if decay of correlations is exponential with respect to other

Banach function spaces B, B′ – for example, both observables are in BV or Lip, where Lip := {f ∈ C(X) :

f is Lipschitz} – as long as ρ(ϵ(n))∥1p,r∥B∥1q,r∥B′ remains an admissible term. For example, if the system

has decay of correlations for Lipschitz observables, one can replace the 1p,r functions with {ρrp}
k(r)
p=1 (a set

of discretisation functions defined in [GRS]) although it requires heavier machinery to adjust the proof for

(4.3.5) and Lemma 4.3.12. Lastly, instead of exponential decay of correlations, the proof remains valid

under stretched exponential decay by manipulating the scale of k in ϵ(n) = (logn)k.

4.3.2 Irrational rotations

Just as in Section 3.2, mixing is important in the proofs in last section, so we look at irrational rotations

again to see what happens if mixing properties are absent. Recall that given an irrational θ ∈ (0, 1),

Tθ : [0, 1) → [0, 1) is defined by Tθ(x) = x+ θ (mod 1). For all x ∈ [0, 1), the shortest distance quantity

Mn(x) is independent of x:

mn(x) = min {∥(i− j)θ∥ : 0 ≤ i < j < n} = min {∥kθ∥ : 1 ≤ |k| < n} = mn(0), (4.3.14)

where the norm ∥·∥ was defined in Definition3.5.1. Then the single-orbit shortest distance problem for

circle rotations is simply determining the limiting behaviour of logmn(0)/ − log n. It should be noted

that the waiting time results in [KS] and the proof for [BLR, Theorem 10] are not directly applicable

here, since this is essentially a recurrence problem.

Theorem 4.3.14. Let θ ∈ (0, 1) be an irrational number with η(θ) > 1, then for every x ∈ [0, 1)

lim inf
n→∞

logmn(x)

− log n
=

1

η
, and lim sup

n→∞

logmn(x)

− log n
≥ 1.

If θ is an algebraic3 number, then η(θ) = 1 and lim supn→∞
logmn(x)
− log r = 1.

Proof for lim sup. By (4.3.14) and Lemma 3.5.6 {∥jθ∥}j∈N is a decreasing sequence, then it suffices to

check lim supn→∞
log ∥nθ∥
logn . By Hurwitz’s theorem [Hur], for all irrational number θ ∈ (0, 1) there are

infinitely many pairs p, q ∈ Z such that ∣∣∣∣θ − p

q

∣∣∣∣ < 1√
5q2

, (4.3.15)

3A number is algebraic if it is a root of some polynomial with integer coefficients.
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which implies

lim sup
n→∞

logmn(0)

− log n
= lim sup

n→∞

log ∥nθ∥
− log n

≥ 1.

Now suppose θ is an algebraic number and let ε > 0 be arbitrary, notice that in this case η(θ) = 1. By

the famous Thue-Siegel-Roth theorem [Rot], for all irrational algebraic number θ, there exists c(θ, ε)

such that there are only finitely many pairs of p, q ∈ Z with∣∣∣∣θ − p

q

∣∣∣∣ ≤ c(θ, ε)

q2+ε
.

Since ε > 0 was arbitrarily small, we conclude with

lim sup
n→∞

log ∥nθ∥
− log n

≤ 1.

Proof for lim inf. Now let nk = qk+1 − 1 where qk is the k-th convergent’s denominator as in Defini-

tion 3.5.3. By Lemma 3.5.6(c) and (4.3.15) above, by sharpness of the constant
√
5, for all x ∈ S1,

lim
k→∞

logmnk
(x)

log nk
= lim

k→∞

log ∥qkθ∥
log qk+1

> lim
k→∞

log qk
log qk+1

=
1

η
,

therefore

lim inf
n→∞

logmn(x)

− log n
≤ 1

η
.

To prove the lower bound for lim inf, recall that τr(x) is a cover time if for all y ∈ S1, there exists

j ≤ τr(x) such that d
(
f jx, y

)
< r. So if τr(x) = k, there exists i, j ≤ k such that d

(
f ix, y

)
and

d
(
f jx, y + 2r

)
< r, which implies d

(
f ix, f jx

)
< 4r. Let ε > 0 and set rn = n−

1
η+ε , by Theorem 3.5.4,

for all n large enough there is τrn(x) ≤ r
−(η+ε)
n = n, that is mn(x) ≤ 4

n1/(η+ε) . As this holds for all n

large,

lim inf
n→∞

logmn(x)

− log n
≥ lim inf

n→∞

− 1
η+ε log n

− log n
=

1

η + ε
.

This concludes the proof for lim inf and the theorem.

Again, we have shown that just like the two-point orbit case [BLR, Theorem 10], the asymptotic

shortest distance in one-point orbit under irrational rotations may not converge.

4.4 Shortest distance for suspension flows
Another immediate application of Theorem 4.2.1 is the shortest distance problem on the suspension

flows defined in Section 3.6. Recall the suspension flow setting: Σ is a two-sided Markov subshift of

finite type, ϕ : Σ → R a Hölder potential, µ the Gibbs measure for ϕ, and φ : Σ → R≥0 an L1(µ) roof
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function with inf φ > 0. The flow space is

Yφ = {(x, s) ∈ Σ× R≥0 : 0 ≤ s ≤ φ(x)} / ∼, equipped with the Bowen-Walters distance dY .

Let {Ψt}t denote the suspension flow on Yφ and ν =
µ×Leb|Yφ

µ×Leb(Yφ) which is a flow-invariant probability

measure on Yφ (see e.g. [AK]). For each x ∈ Σ and T > 0, let

k(x, T ) := max

n ∈ N0 :

n−1∑
j=0

φ
(
σjx

)
≤ T

 .

Then as φ is L1(µ), for µ-a.e. x ∈ Σ, the limit

lim
n→∞

1

n

n−1∑
j=0

φ
(
σjx

)
= lim

T→∞

∑k(x,T )−1
j=0 φ

(
σjx

)
/T

k(x, T )/T
=

∫
φ dµ

is finite. By the definition of k(x, T ),
∑k(x,T )−1

j=0 φ
(
σjx

)
/T → 1 so the above implies that for µ-a.e.

x ∈ Σ,

lim
T→∞

T

k(x, T )
=

∫
φdµ. (4.4.1)

Define mY
T (x, s) = min {dY (Ψt1(x, s),Ψt2(x, s)) : t1 < t2 ≤ T} and mY

T ((x, s), (y, t)) the analogous

two-point version. By [RT, Theorem 4.1, Theorem 4.2], for ν × ν almost every ((x, s), (y, t)),

lim
T→∞

logmY
T ((x, s), (y, t))

− log T
=

2 log 2

H2(µ)
,

where H2(µ) is the Rényi entropy of µ. Analogously, we will prove the following for mY
T (x, s).

Theorem 4.4.1. For ν-a.e. (x, s) ∈ Yφ,

lim
T→∞

logmY
T (x, s)

− log T
=

2 log 2

H2(µ)
, (4.4.2)

Remark 4.4.2. The constant log 2 comes from the symbolic metric ds defined in (3.6.5) on the shift; if

ds(x, y) = c−x∧y for some c > 1 instead, then log 2 in the theorem above is replaced by log c. Anyhow,
H2(µ)
log 2 (or H2(µ)

log c ) should be seen as the correlation dimension D2(µ) for the symbolic system.

Proof. We first prove the upper bound. Let T > 0, by (3.6.7) and Proposition 3.6.4, for all 0 ≤ t1, t2 ≤

T ,

dπ(Ψt1(x, s),Ψt2(x, s)) ≤ cπdY (Ψt1(x, s),Ψt2(x, s)).

By definition of dπ, for all (x, s), (y, t) ∈ Yφ,

dY ((x, s), (y, t)) ≤ min {ds(x, y), ds(σx, y), ds(σy, x)} ,
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which implies that mk(x,T+s)+1(x) < mY
T (x, s), where mk(x) takes the shortest symbolic distance with

respect to ds between iterates of x up to time k. As ds(x, y) = 2−x∧y, −Mk(x) log 2 = logmk(x) so

Mk(x,T+s)+1(x) log 2

log k(x, s+ T )

log k(x, s+ T )

log T
≥ logmY

T (x, s)

− log T
.

By (4.4.1) and Theorem 4.2.1 there exists an intersection S of conull sets4, such that every x ∈ S in

the intersection has

lim
n→∞

Mk(x,T+s)+1(x)

log k(x, s+ T )
=

2

H2(µ)
and lim

T→∞

log k(x, s+ T )

log T
= 1. (4.4.3)

Hence for ν-a.e. (x, s),

lim sup
T→∞

logmY
T (x, s)

− log T
≤ 2 log 2

H2(µ)
.

Now for the lower bound, for each (x, s) ∈ Yφ and T > 0, there is

mY
T (x, s) = min {dY (Ψt1(x, s),Ψt2(x, s)) : t1 < t2 ≤ T}

≤ min
{
dY

((
σk(x,s+t1)x, 0

)
,
(
σk(x,t2+s)x, 0

))
: t1 < t2 ≤ T, k(x, t1 + s) ̸= k(x, t2 + s)

}
≤ cπ min

{
ds

(
σk(x,s+t1)x, σk(x,t2+s)x

)
: t1 < t2 ≤ T, k(x, t1 + s) ̸= k(x, t2 + s)

}
= 2−Mk(x,s+T )(x).

Again, taking x from the intersection of the conull sets as in (4.4.3), for ν-a.e (x, s) ∈ Yφ,

lim inf
T→∞

logmY
T (x, s)

− log T
≥ 2 log 2

H2(µ)
.

Thus, we have shown that for ν-almost every (x, t) in the suspension flow Yφ, limT→∞
logmY

T (x,s)
− log T =

2 log 2
H2(µ)

. This is just an example to demonstrate that the almost sure result for interval maps as in The-

orem 4.2.1 and Theorem 4.3.4 may be proved for flows with some asymptotic independence properties,

for example, the class of flows discussed in Section 3.6.

4A set is conull if its complement has zero measure
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